簡易檢索 / 詳目顯示

研究生: 陳冠廷
Chen, Kungtin
論文名稱: 古亭坑層泥岩水熱合成沸石之研究
A study on the hydrothermal synthesis of zeolites from mudstone of Kutingkeng formation
指導教授: 雷大同
Ray, Dahtong
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 129
中文關鍵詞: 水熱反應伊萊石古亭坑層氫氧方鈉石氫氧鈣霞石方沸石
外文關鍵詞: illite, Kutingkeng Formation, hydrothermal synthesis, analcime, hydroxycancrinite, hydroxysodalite
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣南部台南、高雄麓山帶為上新世(530萬年前)至早更新世(160萬年前)地層出露地區,由一巨厚的灰色泥岩地層構成,總厚度將近五千公尺,稱為古亭坑層,呈現稱為「月世界」的惡地地形。古亭坑層的組成礦物以極細粒之石英為主,約達40 ~ 60%,及微量的長石(<5%),其它為黏土礦物,黏土礦物則以伊萊石(約45-65%)、綠泥石(約35-40%)及微量膨脹性黏土(約10%)為主,古亭坑層泥岩一般並無重要經濟價值。
    本研究以泥岩原樣、>10μm及<2μm分級樣(>10μm部份以石英、長石為主,<2μm以伊萊石、綠泥石為主)為起始原料,利用水熱方式進行沸石之合成,反應使用的礦化劑為NaOH及Na2SiO3,探討礦化劑種類、礦化劑濃度、固/液比、反應溫度及時間等對沸石生成及晶形的影響。結果顯示:古亭坑層泥岩經由水熱反應,在180℃以上可以合成沸石相。隨著反應溫度增加,沸石相的繞射峰強度提高,在溫度達240℃時沸石相之繞射峰最高。以NaOH為礦化劑,在[NaOH]=1M,三者產物皆為方沸石;原樣隨著NaOH濃度增高,方沸石峰升高,在[NaOH]=1.75M以上,產物轉變為氫氧鈣霞石相;>10μm分級樣在[NaOH]=0.5~1.75M範圍,方沸石峰隨著NaOH濃度提升而增加;<2μm分級樣在[NaOH]=1M 以上,產物轉變為水合鋁矽酸鈉。當[NaOH]=5M,原樣、>10μm及<2μm分級樣產物分別為氫氧鈣霞石、鈣霞石及氫氧方鈉石。以Na2SiO3為礦化劑,在240℃,[Na2SiO3]=3~6M,原樣及<2μm分級樣之產物為粒徑均一的方沸石,且<2μm分級樣之效果最好,>10μm分級樣則微量至無沸石生成反應;同時使用NaOH及Na2SiO3為礦化劑,泥岩原樣可合成完美晶形之方沸石;在低Na2SiO3濃度下,Na2SiO3雖與NaOH有加乘生成方沸石的作用,但亦有阻礙石英溶解之作用;提高濃度,Na2SiO3之礦化作用開始展現。隨著水熱反應時間之增長,方沸石及氫氧鈣霞石之晶形趨於完整且粒徑增大,一般而言,反應達4hr後,已大致完成。調整固/液比不影響生成之沸石礦物相,但是影響產物之粒徑及晶形。在高固/液比的條件下,產物晶形較不完整但粒徑較大,隨著固/液比降低,可得到晶形完整且粒徑小且均一之產物,以NaOH為礦化劑時,最適固/液比約為1/15;以Na2SiO3為礦化劑時,約為1/5。

    In southern Taiwan, the western foothill in Tainan-Kaohsiung county is the exposed area of Pliocene (5.3 million years ago) to early Pleistocene (1.6 million years ago) strata composed of a thick grey mudstone series which is 5000 metres in depth, named as Kutingkeng Formation. The appearance of its typical badlands is specifically called “Moon World.”
    The mineral compositions of Kutingkeng Formation are extremely fine quartz, which takes 40%~60% , clay minerals and a small amount of feldspar (<5%). The clay minerals consist of illite (45-65% of total clay), clinochlore (35-40 %) and a small amount of swelling clays (5-10%). Generally, the mudstone of Kutingkeng Formation does not have important economic applications.
    This study investigates how the phase and morphology of zeolites formed by hydrothermal synthesis are affected by the type and concentration of mineralizers, solids/liquid ratio, reaction temperature and time.
    Three starting materials were used in this research, the original complete sample (as received), the >10μm part (mainly quartz and feldspar) and the < 2μm part ( mostly illite and clinochlore). The mineralizers used were NaOH and Na2SiO3.
    The results show that zeolites can be synthesized by hydrothermal reaction for temperatures above 180℃. The products increase as the temperature increases. At the highest temperature of this study, 240℃, gave the best results.
    Using the mineralizer NaOH, three mudstone samples all form analcime [NaAlSi2O6・H2O] at [NaOH]=1M. For the complete sample, the peaks heights of analcime increase as the concentration of NaOH increases, until at [NaOH]=1.75M where the products became hydroxycancrinite [Na8Al6Si6O24(OH) 2・2H2O].
    For the >10μm part, the peaks of analcime increase as the concentration of NaOH increases when [NaOH] is between 0.5~1.75M.
    For the <2μm part, sodium aluminum silicate hydrate [NaAlSi2O6・1.1H2O] was synthesized when [NaOH] is above 1M.
    When [NaOH]=5M, the complete sample (as received), >10μm part and < 2μm part, hydroxycancrinite, cancrinite and hydroxysodalite were synthesized respectively.
    Using Na2SiO3 as the mineralizer, the three samples all produce analcime, for [Na2SiO3]= 3~6M, at 240℃. It is shown that the <2μm part is the most appropriate starting material to synthesize analcime, while the >10μm part is almost no effect.
    Using both NaOH and Na2SiO3 as the mineralizers, the complete sample (as received) can produce the best crystal form of analcime. The Na2SiO3 helps NaOH in the synthesis of analcime, however, it may also hinder the dissolving of quartz at the low concentrations.
    The mineralization function becomes effective only when the concentrations of Na2SiO3 are high.
    Further extension of the reaction has only effects of forming better analcime and hydroxycancrinite crystals and the increasing of the particle sizes. The hydrothermal reaction almost completed after 4 hours.
    Solids/liquid ratio does not affect the phase and the particle size of the zeolites formed. However, high solids/liquid ratio seems to deteriorate the crystal form and produce larger particles.
    The best solids/liquid ratio is approximately 1 to 15 for NaOH as the mineralizer and 1 to 5 for Na2SiO3 as the mineralizer.

    中文摘要.......I Abstract.......III 誌謝.......V 目 錄.......VI 圖 目 錄.......IX 表 目 錄.......XII 第1章 緒 論.......1 1.1研究背景.......1 1.2研究目的.......2 第2章 理論基礎與前人研究.......3 2.1層狀矽酸鹽類礦物之構造.......3 2.1.1伊萊石.......10 2.1.2綠泥石.......10 2.2沸石.......11 2.2.1方沸石.......15 2.2.2氫氧鈣霞石.......20 2.3.3氫氧方鈉石.......22 2.3 古亭坑層泥岩.......24 2.4 水熱反應條件對沸石相生成之影響.......27 2.4.1礦化劑.......27 2.4.2溫度效應.......28 2.4.3鹼度效應.......28 2.4.4持溫時間.......29 第3章 實驗材料與步驟.......30 3.1 實驗材料.......30 3.1.1泥岩樣品.......30 3.1.2化學藥劑.......35 3.2實驗步驟及設備.......36 3.3性質分析.......39 第4章 結果與討論....... 41 4.1反應溫度對沸石生成之影響.......41 4.1.1原樣([NaOH]=1M).......41 4.1.2原樣([NaOH]=5M).......44 4.2 礦化劑濃度與沸石相之關係.......47 4.2.1 氫氧化鈉.......47 (a) [NaOH]=1-7M.......47 (b) [NaOH]=0.5-1.75M.......50 (c) [NaOH]= 5M.......59 4.2.2 矽酸鈉.......62 4.3同時使用NaOH及Na2SiO3二礦化劑與沸石相生成之關係.......70 4.4反應時間與沸石性質之關係.......73 4.5固/液比對沸石性質之影響.......79 (a) [NaOH]=1M.......79 (b) [NaOH]=5M.......83 (c) [Na2SiO3]=5M.......86 第5章 結 論.......89 參考文獻.......91 附錄A 安德利森瓶(Andreasen pipte) 粒徑分佈量測步驟.......94 附錄B 高倍率SEM照片.......98 附錄C 水熱反應原料及產物之重量表.......113

    1. 陳培源,臺灣地質。台灣省應用地質技師公會出版,20章,45-47頁,2006年。
    2. 耿文溥,台南以東丘陵區之地質。經濟部中央地質調查所彙刊,第1號,1-32頁,1981年。
    3. 顏富士、蔡鎰輝,1985,台灣西南部主要泥岩坡地所含粘土之物化特性研究,行政院國家科學委員會防災科技研究報告73-26號。
    4. 張穗蘋,2000,台南地區泥地帶的植物相,台灣南部泥岩生態研討會,pp.13-14。
    5. 劉冠廷,古亭坑層泥岩土壤沖蝕性之研究,屏東科技大學水土保持系研究所碩士論文,2002年。
    6. 高雄縣燕巢鄉公所:http://www.yenchao.gov.tw/open/5-4.asp/
    7. 行政院農委會特有生物研究保育中心:
    http://nature.tesri.gov.tw/tesriusr/internet/natshow.cfm?IDNo=840/
    8. 熊衎昕,高雄壽山地區岩心古亭坑層之底棲性有孔蟲研究,國立中山大學海洋地質及化學研究所碩士論文,2004年。
    9. 林宗儀,台灣南部古亭坑層中砂岩之沈積學,國立中山大學海洋地質研究所碩士論文,1989年。
    10. 陳如瑜,古亭坑層泥岩添加石灰、飛灰穩定處理後之強度特性研究,國立成功大學土木工程研究所碩士論文,1979年。
    11. 王明光,土壤環境礦物學,藝軒圖書出版社,台灣,2000年1月1日。
    12. 趙杏媛,張有瑜,黏土礦物與黏土礦物分析,海洋出版社,北京,1990年5月。
    13. 張仲民,普通土壤學,國立編譯出版,台北市,民國77年。
    14. Grim, R. E., Clay Mineralogy, McGraw-Hill, New York, 1953。
    15. 張郇生,從雲母來認識黏土礦物—兼論黏土,地質,民國82年。
    16. Klein, C. and C.S. Hurlbut, Jr., Manual of Mineralogy, 21st Ed, 2000.
    17. 陳培源,劉德慶,黃怡禎,臺灣之礦物,經濟部中央地質調查所,民國92年。
    18. 中國工業礦物材料網:http://www.chinaimm.com/
    19. Cronstedt, A.F., ”Observation and description of an unknown kind of rock to be named zeolites, ” Kongl Vetenskaps Academiens Handlingar Stockholm Vol.17, pp.120-123, 1756.
    20. Mc Vain, J. W. ,“The Sorption of Gases and Vapors by Solids” , George Rutledge and Sons, London, Ch5, 1932.
    21. 王奕凱,邱宗明,李秉傑合譯,非均勻系催化原理與應用,國立編譯館,渤海堂文化公司,台北,1993。
    22. Barrer, R.M., Hydrothermal Chemistry of Zeolites, Academic Press, 1982.
    23. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 31, pp.578, 1972.
    24. Meier, W. J., D. Olson in Altas of zeolite Structure types, Butterworths, London, 1992.
    25. Yokomori, Y. and S. Idaka,” The crystal Structure of analcime, ” Microporous and Mesoporous Materials, 21 , pp.365-370, 1998.
    26. 胡艷海,周曉磊,李曉云,”天然方沸石制備離子篩試驗研究,”非金屬礦,30卷,3期,23-25頁,2007。
    27. 李光輝,”天然沸石在奶牛飼養業中的應用,”乳業科學與技術,27卷,2期,79-80頁,2004。
    28. 郁明發,” 沸石—一種價廉物美的多用途飼料添加劑(上),” 上海畜牧獸醫通訊,3期,32-34頁,1993。
    29. 郁明發,” 沸石—一種價廉物美的多用途飼料添加劑(下),” 上海畜牧獸醫通訊,4期,29-32頁,1993。
    30. 張莉芬,劉瑞宏,” 內蒙古特大型方沸石礦藏的綜合開發利用途徑,” 中國礦業,9卷,1期,29-31頁,2000。
    31. 姜新福,孫向陽,關裕宓,”天然沸石在土壤改良和肥料生產中的應用研究進展,”草業科學,21卷,4期,48-51頁,2004。
    32. 柳萍,王建龍,”天然沸石在水汙染控制中的應用” ,離子交換與吸附,12卷,4期,378-382頁,1996。
    33. 陳方明,陸琦,曹李靖,於吉順,” 天然沸石的加工技術及其在水處理中的應用,” 安全與環境工程,11卷,1期,19-22頁,2004。
    34. Abe, H., M. Aoki, ”Synthesis of analcime from Volcanic Sediments in Sodium Silicate Solution,” Contributions to Mineralogy and Petrology, vol.42, pp.81-92, 1973.
    35. International Zeolite Association (IZA):http://www.iza-online.org/
    36. Jambor, J.L. and D.A. Vanko,” New Mineral Names,” American Mineralogist, Vol. 78, pp.1314-1319(1993).
    37. 陳肇夏,台灣地質圖,經濟部中央地質調查所編印,2000年
    38. Bajpai, P.K., ” Synthesis of Mordenite Type Zeolite,” Zeolites, vol.6, pp. 2-8, 1986.
    39. Sand, L.B.,” Molecular Sieves,” Society of Chemical Industry, ” London, pp.71-77, 1968.
    40. Shaikh, A.A., P.N. Joshi, N.E. Jacob and V.P. Shiralkar, ” Direct Hydrothermal Crystallization of High-Silica Large-Pore Mordenite,” Zeolites, vol.13, pp.511-517, 1993.
    41. Ghobarkar, H. and O. Schaf, ”Effect of temperature on hydrothermal synthesis of analcime and viseite,” Materials Science and Engineering, B60, pp.163-167 (1999).
    42. Novotna, M., V. Satava, J. Maixner, A. Kluzkova, P. Kostka and
    D. Lezal,” Preparation and Characterisation of Analcime Powders, ” Journal of Optoelectronics and Advanced Matericals, vol.55, pp.1405-1409(2003).
    43. Sand, L.B. and G.W. Dodwell, ”Process for Producing Fluidized Mordenite Particles,” U. S. Pat. No. 4,081,514, 1978

    下載圖示 校內:2011-08-28公開
    校外:2013-08-28公開
    QR CODE