簡易檢索 / 詳目顯示

研究生: 林顯正
Lin, Hsien-Chang
論文名稱: 應用液相氧化法為閘極介電層於假晶磷化銦鎵/砷化銦鎵高速電子移動率金氧半電晶體之研究
InGaP/InGaAs Pseudomorphic High Electron Mobility Metal-Oxide-Semiconductor Transistors with a Liquid Phase Oxidized InGaP as Gate Insulator
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 60
中文關鍵詞: 高速電子移動率場效電晶體液相氧化法
外文關鍵詞: high electron mobility transistor, liquid phase oxidation
相關次數: 點閱:70下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們致力於研究異相氧化法於磷化銦鎵材料上的特性表現。相較於其他氧化系統,液相氧化法系統不需外加其他能量輔助,僅需要使用酸鹼值偵測計(pH Meter)以及溫度調節器(恆溫槽)保持操作在攝氏30~70℃環境下便能成長均勻氧化薄膜。
    在元件應用方面,我們成功應用液相氧化法於磷化銦鎵/砷化銦假晶高速電子移動率場效電晶體 (pseudomorphic high electron mobility transistor, pHEMT)形成金氧半高速電子移動率場效電晶體結構,元件閘極長度及寬度為1微米×100微米,和傳統高速電子移動率場效電晶體相比皆具有完全夾止之特性,傳統高速電子移動率場效電晶體結構在最大閘極0V偏壓下最大汲極電流309 mA/mm,最大轉導122 mS/mm,turn-on電壓1.7V,逆向崩潰電壓為-6.1 V;金氧半高速電子移動率場效電晶體在最大閘極2 V偏壓下最大汲極電流495 mA/mm,最大轉導150 mS/mm,turn-on電壓為4.5 V,逆向崩潰電壓為-22.7 V,此外金氧半結構閘極漏電流可以改善超過840倍。高頻特性方面,傳統高速電子移動率場效電晶體及金氧半高速電子移動率場效電晶體之截止頻率分別為9.3 GHz及7.1 GHz,最大震盪頻率分別為18.5 GHz及20 GHz。由結果可見,對於所研製的磷化銦鎵/砷化銦鎵金氧半高速電子移動率場效電晶體(InGaP/InGaAs MOS-pHEMTS),turn-on電壓提升2.8 V、崩潰電壓提升16.1 V、閘極漏電流改善超過840倍、最大震盪頻率提升1.5 GHz及改善最小雜訊指數。

    We have demonstrated that liquid phase oxidation (LPO) technique to grow native oxide films on InGaP material. The liquid phase oxidation system is simple, low cost and low temperature in comparison with the other oxidation systems. In addition, the InGaP/InGaAspseudomorphic metal–oxide- semiconductor (MOS pHEMTs) with a liquid phase oxidized InGaP as gate insulators have been fabricated. Both of the conventional pHMET and MOS-pHEMT with gate length and width of 1 μm × 100 μm exhibit complete pinch-off characteristics. For the conventional pHEMTs, the maximum drain current density is 309 mA/mm at maximum gate-to-source voltage of 0 V. The peak extrinsic transconductance is 122 mS/mm. The maximum turn-on voltage is 1.7 V. The breakdown voltage is -6.1 V. For the MOS-pHEMTs with gate oxide thickness of 6 nm, the maximum drain current density is 495 mA/mm at maximum gate-to-source voltage of 2 V. The peak extrinsic transconductance is 150 mS/mm. The maximum turn-on voltage is 4.5 V. The breakdown voltage is -22.7 V. In addition, the gate leakage current density can be significantly improved for about 840 fold in the MOS-pHEMTs structure in comparison with conventional pHEMTs.
    Furthermore, the cutoff frequencies of conventional pHEMTs and MOS-pHEMTs are 9.3 GHz and 7.1 GHz; the maximum oscillation frequencies are 18.5 GHz and 20 GHz, respectively. As the results above, the InGaP /InGaAs MOS-pHEMTS have improved the turn-on voltage 2.8 V 、 breakdown voltage 16.1 V、gate leakage current more than 840 times、 maximum oscillation frequencies 1.5 GHz and the Noise Figure minimum.

    Contents Abstract Ⅰ List of Tables VII List of Figures VIII Special Thanks X 1 Introduction 1.1 Background………………………………………………………...1 1.2 Organization……………………………………………………..…6 2 Experimental Procedures and Characterization of LPO on InGaP 2.1 Introduction.……..……… ………..……………..………………8 2.2 Liquid Phase Oxidation Procedures………..………………………..9 2.3 The Oxidation Rate and Refractive Index of LPO-Oxide Films....10 2.4 Physical Characteristics of AFM Image.………...…………….,….11 3 Fabrication procedures of the InGaP/InGaAs pHEMT with LPO 3.1 Introduction.……………..…………………………...…………..17 3.2 Device Structure ……………….………………………………...18 3.3 InGaP /InGaAs pHEMT with LPO Process..….…….…………...18 3.4 Summary.…………………………….……………….…………..22 4 The Performance of InGaP/InGaAs pHEMT with a Liquid Phase Oxidized InGaP as Gate Insulator 4.1 Introduction...………………………………….…………………30 4.2 The DC Experiment Results.…...…………..….……….……...…31 4.2.1 The Saturated Drain Current.….………….…………….……....31 4.2.2 The Transconductance..……..…………………………….……32 4.2.3 The Breakdown Voltage.…...………………..…………………33 4.2.4 The Gate Leakage Current…………………….….…………….34 4.3 The Microwave Experiment Results…………………..…………35 4.3.1 The fT and fmax...…...………………..….……………………….35 4.3.2 The Noise Figure Performance…..….…..….…………………..37 4.4 Summary.……………………….………………….…………….. 38 5 Conclusions 5.1 Conclusions....…………………..………………………………..53 5.2 Future Works.………………...….…..……………...………..……….53 Reference ……………………….…………………………………………..55

    [1] J. Bardeen and W. H. Brattain, “The Transistor, a Semiconductor Triode,” Phys. Rev.,vol. 74, pp. 230-231, 1948
    [2] W. Schockley, “Circuit elements utilizing semiconductive material,” U. S. Patent, N. 2569, pp. 347, 1951
    [3] F. Ali and A. Gupta, HEMTS and HBTS:Devices,Fabrication and Circuits, Boston London: Artech House, 1991
    [4] R. Dingle, H. L. Strmer, A. C. Gossard and W. Wiegmann, “Electron mobility in modulation-doped semiconductor hetero-junction superlattices,” Appl. Phys. Lett., vol 33, pp. 665-667, 1978
    [5] F. Schwierz and J J. Liou, “ Modern Microwave Transistors: Theory,Design, and Performance ”, USA, New Jersey, John Wiley & Sons, Inc, 2002
    [6] H. L. Strmer, R. Dingle, A. C. Gossard, W. Wiegmann and M. D. Sturge, “Two dimensional electron gas at a semiconductor–semiconductor interface ,” Solid-State Comm., vol. 29, pp. 705-709, 1979
    [7] T. Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, “A new field effect transistor with selectively doped GaAs/n-AlGaAs heterostructures ,” Jpn. J. Appl. Phys., vol. 19, pp. L225-227, 1980
    [8] D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Labnion, J. Chaplart and N. T. Linh, “ Two dimensional elecron gas MESFET structure ”, Electronics Letters, vol. 16, pp. 667-668, 1980
    [9] S. L. Su, R. Fisher, T. Drummond, W. Lyons, R. Thorne, W. Kopp and H. Morkoc, “Modulation-doped AlGaAs/GaAs FET’s with high transconductance and saturation velocity,” Electronics Letters, vol. 18, pp. 794-796, 1982
    [10] T. W. Hickmott, P. M. Solomon, R. Fischer and H. Morkoc, “Negative charge, barrier heights, and the conduction-band discontinueity in AlxGa1-xAs capacitors ,” J. Appl. Phys., vol. 57, p.2844, 1985
    [11] S. Subramanian, “Model for the temperature dependence of the threshold voltage of modulation-doped field-effect transistors,” IEEE Trans. Electron Devices, vol. 32, pp. 865-870, 1980
    [12] J. M. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Crystal Growth, vol. 27, pp. 118-125, 1974
    [13] A. Ketterson, M. Moloney, W. T. Masselink, J. Klem, R.Fischer, W. Kopp and H. Morkoc, “High transconductance AlGaAs/InGaAs/GaAs pseudomorphic modulation-doped field-effect Transistors,” IEEE Electron Device Letters, vol. 6, pp. 628-630, 1985
    [14] A. Ketterson, W. T. Masselink, J.S. Gedymin, J. Klem, W. Kopp, H. Morkoc and K. R. Gleason, “Characterization of InGaAs/AlGaAs Pseudomorphic Modulation-Doped Field- Effect Transistors ,” IEEE Trans. Electron Devices, vol. 33, pp. 564-571 ,1986
    [15] A.Thomasian, A. A. Rezazadeh and L. G. Hipwood, “Observation and mechanism of kink effect in depletion-mode AlGaAs/GaAs and AlGaAs/GaInAs HEMTS,” Electronics Letters, vol. 25, pp. 351-353, 1989
    [16] A. Cappy, B. Carnez, R. Fauquembergues, G. Salmer and E. Constant, “Comparative potential performance of Si, GaAs, GaInAs, InAs submicrometer-gate FETS,” IEEE Trans. Electron Devices, vol. 27, pp. 2158-2160,1980
    [17] M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long and D. I. Babic, “Determination of valence and conduction-band discontinuites at the (Ga,In) P/GaAs heterojunction by C-V profiling,” J. Appl. Phys., vol. 61, pp. 643-649, 1987
    [18] R. Menozzi, P. Cova, C. Canali and F. Fantini, “Breakdown walkout in pseudormorphic HEMT’S,” IEEE Trans.Elctron Dev., vol. 43, pp. 543-546, 1996
    [19] S. Fujita, T. Noda, A. Wagai, C. Noxaki and Y. Ashizawa, “Novel HEMT structure using a strained InGaP Schottky layer,” in 5th Proc. of Indium Phosphide and Relsted Materials, Paris, France, April 19-22, 1993, pp. 497-500
    [20] H. K. Huang, C. S. Wang, Y. H. Wang, C. L. Wu and C. S. Chang, “Temperature effects of low noise InGaP/InGaAs/GaAs PHEMTS,” Solide-State Electron, vol. 47, pp. 1989-1994, 2003
    [21] H. K. Huang, C. S. Wang, C. P. Chang, Y. H. Wang, C. L. Wu and C. S. Chang, “Noise characteristic of InGaP/InGaAs/GaAs pHEMTS,” IEEE Trans. Electron Devices, vol. 52, pp. 1706-1712, 2005
    [22] Y. S. Lin, S. S. Lu and Y. J. Wang, “High-performance GaInP/GaAs airbridge gate MISFET’S grown by gas-source MBE ”, IEEE Trans. Electron Devices, vol. 44, pp. 921-929, 1997
    [23] K. W. Lee, Y. J. Lin, N. Y. Yang, Y. C. Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “InGaP/InGaAs/GaAs metal-oxide semiconductor pseudomorphic high electron mobility transistor with a liquid phase oxidized InGaP gate ,” in proceedings of 7th IEEE International Conference on Solid-State and Integrated Circuits Technology (ICSICT), Beijing, China, Oct. 18-21, 2004, pp. 2301-2304
    [24] K. Inoue, J. C. Harmand and T. Matsumo, “High-quality InxGa1-xAs/InAlAs modulation-doped heterostrctures grown lattice-mismatched on GaAs substrates,” J. Crystal Growth, vol. 111, pp. 313-317, 1992
    [25] W. E. Hoke, P. J. Lemonias, J. J. Mosca, P. S. Lyman, A. Torabi, P. F. Marsh, R. A. McTaggart, S. M. Lardizabad and K. Helzar, “Molecular Beam Epitaxial Growth and Device Peformance of Metamorphic High Electron Transistor Structures Fabricated on GaAs Substrates,” J. Vac. Sci. Technology, B17, pp. 1131-1135, 1999
    [26] H. H. Wang, J. Y. Wu, Y. H. Wang and M. P. Houng, “Effect of PH values on the kinetics of liquid phase chemical enhanced oxidation of GaAs,” J. Electronchem. Soc., vol. 146, pp. 2328-2332, 1999
    [27] H. H. Wang, Y. H. Wang and M. P. Houng, “Near room temperature selective oxidation on GaAs using photoresist as a mask,” Jpn. J. Appl. Phys., vol. 37, pp. L988-990, 1998
    [28] J. Y. Wu, H. H. Wang, Y. H. Wang and M. P. Houng, “A GaAs MOSFET with a liquid phase oxidized gate,” IEEE Electron Devices Letters, vol. 20, pp. 18-20, 1999
    [29] J. Y. Wu, H. H. Wang, Y. H. Wang and M. P. Houng, “GaAs MOSFET’s fabrication with a liquid phase oxidized gate,” IEEE Trans. Electron Devices, vol. 48, pp. 634-637, 2001
    [30] K. W. Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “Liquid phase chemical enhanced oxidation on AlGaAs and its application,” Jpn. J. Appl. Phys., vol. 43, pp. 4087-4091, 2001
    [31] K. W. Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “AlGaAs/InGaAs metal-oxide-semiconductor pseudomorphic high-electron –mobility transistor with a liquid phase oxidized AlGaASs as gate dielectric,” Solid-State Electron, vol. 49, pp. 213-217, 2005
    [32] K. W. Lee, N. Y. Yang, M. P. Houng and Y. H Wang, “Improved breakdown voltage and impact ionization in InAlAs/InGaAs metamorphic high-electron-mobility transistor with a liquid phase oxidized InGaAs gate ,” Appl. Phys. Lett., vol. 87, pp. 263501-1-263501-3, 2005
    [33] K. W. Lee, P. W. Sze, Y. J. Lin, N. Y. Yang, M. P. Houng and Yeong-Her Wang, “InGaP/InGaAs metal-oxide semiconductor pseudomorphic high-electron-mobility transistor with a liquid-phase-oxidized InGaP as gate dielectric ,” IEEE Electron Device Letters, vol. 26, pp. 864-866, 2005
    [34] S. K. Ghandhi, VLSIFabrication Principles: Silicon and GalliumArsennide, New York: John Wiley & Sons, Inc., 1994
    [35] D. J. Coleman, D. W. Shaw and R. D. Dobott, “On the mechannism of GaAs anodization,” J. Electrochem. Soc., vol. 124, pp. 239-241, 1977
    [36] E. Kohn, “A Correlation Between Etch Characteristics of GaAs Etch Solutions Containing and Surface Film Characteristics,” J. Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY, Vol. 127, No. 2, 1980
    [37] J. R. Meyer-Arendt, Introduction to classical and modern optics, Englewood Cliffs, N. J.: Prentice-Hall Inc., 1971.
    [38] T. Sugano, “Oxidation of GaAs1-xPx surface by oxygen plasma and properties of oxide film,” J. Electrochem. Soc., vol. 121, pp. 113-118, 1974
    [39] M. Sadaka, D.l Hill, F. Clayton, H. Henry, C. Rampley, J .Abrokwah, and R. Uscola, “Development of Motorola’s InGaP HBT Process,” GaAsMANTECH, Inc. ,2002
    [41] I. Thayne, “Advanced Ⅲ-Ⅳ HEMTs,” The advanced semiconductor magazine, vol.16, pp. 48-51, 2003.
    [42] C. L. Lau, M. Feng, T. R. Lepkowski, G. W. Wang, Y. Chang and C. Ito, “Half-micrometer gate-length ion-implanted GaAs MESFET with 0.8-dB noise figure at 16 GHz,” IEEE Electron Device Letters, vol. 10, pp. 409-411, 1989.
    [40] 王永和, 廖晉毅, 劉安鴻, 洪茂峰, 林建良, “III-V 族半導體之選擇性蝕刻方法及溶液,” 發明第二二九三七九號, 中華民國專利,民國九十四年三月十一日至一百一十三年二月二十六日止

    下載圖示 校內:2012-07-27公開
    校外:2012-07-27公開
    QR CODE