簡易檢索 / 詳目顯示

研究生: 姜瀚盛
Jiang, Han-Sheng
論文名稱: 以奈米碳管/奈米碳纖維之複合材料應用於鋰電池負極之研究
Application of Carbon Nanotube/ Carbon Nanofiber Composite in Lithium Ion Battery Anode
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 奈米碳管鋰電池負極電漿改質
外文關鍵詞: Carbon nanotube, lithium ion batteries anode, Plasma modification
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用本實驗室開發之電漿接枝技術改質奈米碳管,將奈米碳管表面進行有機化改質,克服其自身的凡得瓦力提升在溶劑中的分散性,並添加於聚丙烯腈系的奈米碳纖維,誘導其石墨化程度提升,增加物理性質以及電化學性質。最後應用於鋰離子電池之負極材料降低內部阻抗。同時,利用電紡絲技術製備負極材料,可以得到一塊不需要基材(例如:鋁箔)的負極碳材料,並利用奈米電紡絲的高比表面積得到高比電容值的負極材料。
    首先,利用電漿技術將馬來酸酐或丙烯腈等單體接枝於奈米碳管上。將接枝馬來酸酐或是丙烯腈的改質奈米碳管添加進二甲基甲醯胺分散,並將聚丙烯腈均勻溶解於奈米碳管分散液中進行靜電紡絲實驗製備奈米纖維,最後將奈米纖維以不同溫度鍛燒,得到鋰離子電池負極片。利用四點探針量測量負極片的片電阻值,由實驗結果可得知,當鍛燒溫度為1400 0C,接枝丙烯腈的奈米碳管添加量2.5%時,負極片片電阻值可下降到25 Ω/sq(Ω/sq為表面阻抗率,每歐姆平方),ID/IG之石墨化程度可降至0.4、當奈米碳管添加量2.5%,鍛燒溫度為800 0C時,負極片片電阻值可下降到228 Ω/ sq。將奈米碳管添加量2.5%,鍛燒溫度為800 0C之樣品組裝成電池進行測試後,其0.1 C放電電容量最高可達561 mAh/g,0.1 C長循環充放電50圈後電容量為220 mAh/g。
    低溫鍛燒的負極片由於具有微孔及表面殘留氮官能基,可以增加鋰離子的儲存量,但是內部電阻過高使循環效能降低;高溫鍛燒之負極片因為石墨化程度提升造成微孔閉合及氮官能基減少,雖使循環效能提升,但是電容量降低。因此,本研究於低溫鍛燒之負極片添加奈米碳管以降低內電阻,於高溫鍛燒之負極片以氧電漿做表面改質,增加其親水性,使負極片和電解質之親和性增加,增加其電化學性質表現。氧電漿表面活化後之負極片1200 0C鍛燒,2.5 wt% CNT-AN添加量電容值充放電循環50圈後為200 mAh/g,循環性能表現電容值下降由未改質之38%下降至27%,不可逆電容值由未改質之70%下降至57%;1400 0C鍛燒,2.5wt% CNT-AN添加量電容值充放電循環30圈後為180 mAh/g,循環性能表現電容值下降由未改質之16%下降至9%,不可逆電容值由未改質之2.7%下降至2%

    The grafting amount of PAN on CNTs is 70.6 wt%. The ID/IG value of 800 0C/2.5 wt% CNT-AN sample is 0.97; The ID/IG value of 1200 0C/2.5 wt% CNT-AN sample is 0.94 and the ID/IG value of 14000C/2.5 wt% CNT-AN sample is 0.41.
    The resistance of carbon nanofibers 8000C/2.5 wt% CNT-AN is 228Ω/sq; 14000C/2.5 wt% CNT-AN is 25Ω/sq. CNT-AN can reduce Rc and Rp effectively.
    The 12000C/2.5 wt% CNT-AN anode’s irreversible capacity is 57% and decreasing 27% from 1st cycle to 50th cycle; the 14000C/2.5 wt% CNT-AN anode’s irreversible capacity is 2% and decreasing 9% from 1st cycle to 50th cycle. CNT-AN can improve the capacity of the anodes effectively.

    摘要 i Abstract iii Extended Abstract 誌謝 xxvi 總目錄 I 表目錄 III 圖目錄 IV 第一章 緒論 1 1-1 前言 1 1-2 研究背景 2 第二章 文獻回顧 3 2-1 鋰電池負極材料 3 2-1-1 鋰電池負極材料介紹 4 2-1-2 鋰電池負極材料原理 7 2-2 碳系材料應用於鋰離子負極材料 10 2-2-1 硬碳 11 2-2-2 奈米碳管 13 2-2-3 石墨烯 14 2-3 合金/脫合金材料 16 2-3-1 矽活性負極材料 17 2-3-2 一氧化矽活性負極材料 18 2-3-3 鍺元素活性負極材料 19 2-3-4 二氧化錫活性負極材料 21 2-4 碳纖維 22 2-4-1 聚丙烯腈系碳纖維介紹 22 2-4-2 有機纖維法製備聚丙烯腈系碳纖維 23 2-4-3碳纖維應用於鋰離子電池電極 25 2-5 奈米碳纖維製備方法-靜電紡絲法 26 2-5-1靜電紡絲發展歷程 26 2-5-2 靜電紡絲設備與原理 27 2-6 研究動機與目的 28 第三章 實驗內容 29 3-1 實驗藥品 29 3-2 實驗儀器 30 3-3 實驗步驟 32 3-3-1電漿改質法 32 3-3-2奈米碳管/奈米纖維複合電紡絲製備 33 3-3-3奈米碳管/奈米碳纖維複合材料製備 34 3-3-4 鋰電池組裝 35 3-3-5 分析方式 36 第四章 結果與討論 38 4-1 電漿改質接枝分析 38 4-1-1 多壁奈米碳管接枝馬來酸酐 38 4-1-2 多壁奈米碳管接枝丙烯腈 42 4-2 奈米碳管/聚丙烯腈電紡纖維 46 4-3 奈米碳管對奈米碳纖維石墨化之影響 51 4-4 奈米碳纖維表面X-射線電子能譜儀分析57 4-5 奈米碳纖維之負極片鋰電池性能分析 63 4-5-1 CNT-AN添加量對電池效能影響 63 4-5-2 氧電漿活化奈米碳纖維負極片表面對鋰電池效能影響 66 4-5-3 添加CNT-AN對鋰電池內部電阻影響 78 第五章 結論 80 參考文獻 82

    [1] 陳奕翰,國立成功大學博士班論文,”利用新穎電紡絲技術製備複合奈米碳纖維材料之研究”。(2007), p.1
    [2] 航翊科技公司介紹鋰電池
    [3] BERC鋰電池充放電示意圖
    [4] Mary L. Patterson, Indiana University Battery Workshop, Anode Materials for Lithium Ion Batteries, (2009)
    [5] I. Mochida, C.H. Ku, Y. Korai, Carbon 39 (2001) 399–410
    [6] K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, G. Ceder, J. Phys. Chem. Lett. 1 (2010) 1176-1180.
    [7] N.A. Kaskhedikar, J. Maier, Adv. Mater. 21 (2009) 2664-2680.
    [8] J.M. Tarascon, M. Armand, Nature 414 (2001) 359-367.
    [9] J. Liu, Adv. Funct. Mater. 23 (2013) 924-928.
    [10] F. Orsini, A. du Pasquier, B. Beaudouin, J.M. Tarascon, M. Trentin,N. Langenhuizen, E. de Beer, P.Notten, J.Power Sources 81-82 (1999) 918-921.
    [11] B.J. Landi, M.J. Ganter, C.D. Cress, R.A. Di Leo, R.P. Raffaelle, Energy Environ. Sci. 2 (2009) 638-654.
    [12] C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim, M. Endo, Adv.
    Funct. Mater. 16 (2006) 2393-2397.
    [13] J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi,Phys. Chem. Chem. Phys. 13(2011) 15384-15402.
    [14] H. Zhou, S. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater. 15 (2003)2107-2111
    [15] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto, Solid State Ionics 152-153 (2002) 125-129
    [16] M. Ge, J. Rong, X. Fang, C. Zhou, Nano Lett. 12 (2012) 2318-2323.
    [17] I.-S. Hwang, J.C. Kim, S.D. Seo, S. Lee, J.H. Lee, D.W. Kim, Chem. Commun. 48 (2012) 7061-7063.
    [18] K. Zhuo, M.G. Jeong, C.H. Chung, J. Power Sources 244 (2013) 601-605.
    [19] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Adv. Mater. 24 (2012) 5166-5180.
    [20] Z. Wang, L. Zhou, X.W. Lou, Adv. Mater. 24 (2012) 1903-1911.
    [21] P.P. Prosini, M. Carewska, S. Loreti, C. Minarini, S. Passerini, Int. J. Inorg. Mater. 2 (2000) 365-370.
    [22] L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Energy Environ. Sci. 4 (2011) 2682-2699.
    [23] Y. Wang, H. Li, P. He, E. Hosono, H. Zhou, Nanoscale 2 (2010) 1294-1305.
    [24] Nahong Zhao, Lijun Fu, Lichun Yang, Tao Zhang, Gaojun Wang, Y. Wu,
    a.T.v. Ree, Pure Appl. Chem. 80 (2008) 2283-2295.
    [25] L. Qiao, X. Sun, Z. Yang, X. Wang, Q. Wang, D. He, Carbon 54 (2013) 29-35.
    [26] P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930- 2946.
    [27] F. Jiao, P.G. Bruce, Adv. Mater. 19 (2007) 657-660.
    [28] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. P. Zaccaria, C. Capiglia, J. Power Sources, 257 (2014) 421-443
    [29] B. Douglas, D. McDaniel, J. Alexander. Concepts and Models of Inorganic Chemistry 3rd
    [30] H. Li, H. Zhou, Chem. Commun. 48 (2012) 1201-1217.
    [31] Y.C. Yen, S.C. Chao, H.C. Wu, N.L. Wu, J. Electrochem. Soc. 156 (2009) A95-A102.
    [32] H.L. Zhang, S.H. Liu, F. Li, S. Bai, C. Liu, J. Tan, H.M. Cheng, Carbon 44 (2006) 2212-2218.
    [33] M. Yashio, H. Wang, K. Fukuda, T. Umeno, T. Abe, Z. Ogumi, J. Mater. Chem. 14 (2004) 1754-1758.
    [34] H.L. Zhang, S.H. Liu, F. Li, S. Bai, C. Liu, J. Tan, H.M. Cheng, Carbon 44 (2006) 2212-2218.
    [35] R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem. 21 (2011) 9938-9954.
    [36] C.C. Li, Y.W. Wang, J. Power Sources 227 (2013) 204-210.
    [37] S. Boyanov, K. Annou, C. Villevieille, M. Pelosi, D. Zitoun, L. Monconduit, Ionics 14 (2008) 183-190.
    [38] M. Yashio, H. Wang, K. Fukuda, T. Umeno, T. Abe, Z. Ogumi, J. Mater. Chem. 14 (2004) 1754-1758.
    [39] O. Haik, S. Ganin, G. Gershinsky, E. Zinigrad, B. Markovsky, D. Aurbach, I. Halalay, J. Electrochem. Soc. 158 (2011) A913-A923.
    [40] H. Wang, M. Yoshio, T. Abe, Z. Ogumi, J. Electrochem. Soc. 149 (2002) A499- A503.
    [41] H. Nakagawa, Y. Domi, T. Doi, M. Ochida, S. Tsubouchi, T. Yamanaka, T. Abe, Z. Ogumi, J. Power Sources 236 (2013) 138-144.
    [42] S. Tsubouchi, Y. Domi, T. Doi, M. Ochida, H. Nakagawa, T. Yamanaka, T. Abe, Z. Ogumi, J. Electrochem. Soc. 160 (2013) A575-A580.
    [43] J. Sun, H. Liu, X. Chen, D.G. Evans, W. Yang, X. Duan, Adv. Mater. 25 (2013)1124.
    [44] H. Fujimoto, K. Tokumitsu, A. Mabuchi, N. Chinnasamy, T. Kasuh, J. Power Sources 195 (2010) 7452-7456.
    [45] J. Yang, X.-y. Zhou, J. Li, Y.-l. Zou, J.-j. Tang, Mater. Chem. Phys. 135 (2012) 445-450.
    [46] C.A. Bridges, X.-G. Sun, J. Zhao, M.P. Paranthaman, S. Dai, J. Phys. Chem. C 116 (2012) 7701-7711.
    [47] J. Yang, X.Y. Zhou, J. Li, Y.L. Zou, J.J. Tang, Mater. Chem. Phys. 135 (2012) 445-450.
    [48] C.C. Li, Y.W. Wang, J. Power Sources 227 (2013) 204-210.
    [49] Y. Yu, C. Cui, W. Qian, Q. Xie, C. Zheng, C. Kong, F. Wei, Asia-Pacific J. Chem. Eng. 8 (2013) 234-245.
    [50] V. Meunier, J. Kephart, C. Roland, J. Bernholc, Phys. Rev. Lett. 88 (2002) 075506.
    [51] H.S. Oktaviano, K. Yamada, K. Waki, J. Mater. Chem. 22 (2012) 25167-25173.
    [52] J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi, Phys. Chem. Chem. Phys. 13 (2011) 15384-15402.
    [53] H.J. Hwang, J. Koo, M. Park, N. Park, Y. Kwon, H. Lee, J. Phys. Chem. C 117 (2013) 6919-6923.
    [54] D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, Z. Jiao, Chem. Mater. 21(2009) 3136-3142.
    [55] Z.-L. Wang, D. Xu, H.-G. Wang, Z. Wu, X.-B. Zhang, ACS Nano 7 (2013) 2422-2430.
    [56] B.P. Vinayan, S. Ramaprabhu, J. Mater. Chem. A 1 (2013) 3865-3871.
    [57] J. Wang, Y. Zhou, B. Xiong, Y. Zhao, X. Huang, Z. Shao, Electrochim. Acta 88(2013) 847-857.
    [58] A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayan, Adv. Mater. 24(2012) 5045-5064.
    [59] C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Chem. Soc. Rev. 39 (2010) 3115-3141.
    [60] W.-J. Zhang, J. Power Sources 196 (2011) 13-24.
    [61] U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources 163 (2007) 1003-1039.
    [62] H. Wu, Y. Cui, Nano Today 7 (2012) 414-429.
    [63] J.R. Szczech, S. Jin, Energy Environ. Sci. 4 (2011) 56-72.
    [64] R. Teki, M.K. Datta, R. Krishnan, T.C. Parker, T.-M. Lu, P.N. Kumta, N. Koratkar, Small 5 (2009) 2236-2242.
    [65] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater. 9 (2010) 353-358.
    [66] R. Chandrasekaran, A. Magasinki, G. Yushin, T.F. Fuller, J. Electrochem. Soc.157 010) A1139e-A1151.
    [67] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nano 3 (2008) 31-35.
    [68] Y. Yao, K. Huo, L. Hu, N. Liu, J.J. Cha, M.T. McDowell, P.K. Chu, Y. Cui, ACS Nano 5 (2011) 8346-8351.
    [69] H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nat. Nano 7 (2012) 310-315.
    [70] M. Zhou, M.L. Gordin, S. Chen, T. Xu, J. Song, D. Lv, D. Wang, Electrochem.
    Commun. 28 (2013) 79-82.
    [71] G. Jeong, J.-H. Kim, Y.-U. Kim, Y.-J. Kim, J. Mater. Chem. 22 (2012) 7999-8004.
    [72] J.-H. Kim, H.-J. Sohn, H. Kim, G. Jeong, W. Choi, J. Power Sources 170 (2007)456-459.
    [73] T. Tabuchi, H. Yasuda, M. Yamachi, J. Power Sources 146 (2005) 507-509.
    [74] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto, Solid State Ionics 152e153 (2002) 125-129.
    [75] K. Song, S. Yoo, K. Kang, H. Heo, Y.-M. Kang, M.-H. Jo, J. Power Sources 229(2013) 229-233.
    [76] C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Chem. Soc. Rev. 39 (2010) 3115-3141.
    [77] A.M. Chockla, K.C. Klavetter, C.B. Mullins, B.A. Korgel, ACS Appl. Mater. Interfaces 4 (2012) 4658-4664.
    [78] K.H. Seng, M.-h. Park, Z.P. Guo, H.K. Liu, J. Cho, Nano Lett. 13 (2013) 1230-1236.
    [79] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Adv. Mater. 24 (2012) 5166-5180.
    [80] X. Li, C. Wang, J. Mater. Chem. A 1 (2013) 165-182.
    [81] J. Ye, H. Zhang, R. Yang, X. Li, L. Qi, Small 6 (2010) 296-306.
    [82] 進藤昭男: 大阪工業技術試驗所報告 317(1961) 1-52.
    [83] M.Y. Wu, Q.Y. Wang, K. Li, Y.Q. Wu, H.Q. Liu, J. Polym. Degrad. Stab 97 (2012) 1511-1519.
    [84] W.X. Zhang, Y.Z. Wang, C.F. Sun. J. Polym. Res. 14 (2007) 467-474.
    [85] M.S.A. Rahaman, A.F. Ismail, A. Mustafa. Polym. Degard. Stab. 92 (2007) 1421-1432.
    [86] D. Zhu, A. Koganemaru, C. Xu, Q.D. Shen, S.L. Li, M. Matsuo, J. Appl. Polym. Sci. 87 (2003) 2063-2073.
    [87] M. Jing, C.G. Wang, Q. Wang, Y.J. Bai, B. Zhu. Polym. Degrad. Stab. 92 (2007) 1737-1742.
    [88] M. Endo, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, et al. Carbon2001;39(9):1287–97.
    [89] Camea´n I, Garcı´a AB, Suelves I, Pinilla J.L., La´zaro M.J, Moliner R, J. Power Sources (2012);198:303–7.
    [90] C. V. Boys, (1887). "On the Production, Properties, and some suggested Uses of the Finest Threads". Proceedings of the Physical Society 9: 8. doi:10.1088/1478-7814/9/1/303.
    [91] Cooley, J.F. Patent GB 06385 “Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids” 19th May 1900.
    [92] A. Formhals, U.S. Patent 1,975,504, 1934.
    [93] Doshi, J. and Reneker, D. H. (1995), J. Electrostatics 35 (2–3): 151. doi:10.1016/0304 3886(95)00041-8.
    [94] Y. Wang, S. Serrano, J. J. Santiago-Aviles. J. Mater. Sci. Lett. 21(2002) 1055-1057.
    [95] R.Kesick, G. Tepper. Appl. Phys. Lett. 83(2003) 557-559.
    [96] K. Ohgo, C. Zhao, M. Kobayashi, T. Asakura. Polymer 44 (2003) 841-846.
    [97] P. Gupta, G.L. Wilkes. Polymer 44 (2003) 6353-6359
    [98] Hana Richter, Kristina Fuerst, Alex Howard, Colin Oakley "Nanofiber technology for tissue engineering" .
    [99] J.H. Kim, H.S. Ganapathy, S.S. Hong, Y.S. Gal, K.T. Lim. J. Supercritical Fluids 47 (2008) 103-107.
    [100] M.J. Meziani, P. Pathak, W. Wang, T. Desai, A. Patil, Y.P. Sun. Ind. Eng. Chem. Res. 44 (2005) 4594-4598.
    [101] E. Reverchon, R. Adami. J. Supercritical Fluids 37 (2006) 1-22.
    [102] J. Xie, P.K. Sharma, V.V. Varadan, V.K. Varadan, B.K. Pradhan, S. Eser. Mater. Chem. Phys. 76 (2002) 217-223.
    [103] T. Bhuvana, A. Kumar, A. Sood, R. H. Gerzeski, J.J. Hu, V.S. Bhadram, C. Narayana, T.S. Fisher, ACS Appl. Mater. Interfaces 2 (2010) 644-648.
    [104] B.Q. Wei, R. Vajtai, P.M. Ajayan. Carbon 41 (2003) 179-198.
    [105] G.B. Zeng, K. Kouda, H. Sano, Y. Uchiyama, Y.F. Shi, H.J. Quan. Carbon 42 (2004) 635-640.
    [106] C. H. Tseng, C. C. Wang and C. Y. Chen, Chem. Mater. (2007), 19, 308
    [107] I.H. Chen, C.C. Wang, C.Y. Chen, J. Phys. Chem. C (2010) 114, 13532–13539

    無法下載圖示 校內:2024-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE