| 研究生: |
林揚善 Lin, Yang-Shan |
|---|---|
| 論文名稱: |
壓力驅動下之奈米流場探討 On the Study of Pressure-Driven Flow in a Nanochannel |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 分子動力學 、奈米流場 |
| 外文關鍵詞: | Flow in Nanochannel, Molecular Dynamics |
| 相關次數: | 點閱:212 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在流場性質的討論中,Couette和Poiseuille等簡單流場是常常被討論和研究的,而在微觀流場中,壁面附近的流體密度震盪及其滑動現象是其和巨觀流場行為的兩大差異處。本文以分子動力學模擬類似壓力驅動下管徑為10個分子直徑和22個分子直徑之奈米流場,由分子位置分佈圖可清楚看出平板銅分子會吸引液態氬分子而形成類似吸附層的現象,而流場密度分佈圖也顯示壁面附近因平板吸附作用而產生之密度陡升的性質。又從流場速度分佈圖來看,當給定之驅動壓力較小與較大時,分別可以得到定性上層流拋物線分佈和紊流形式之速度分佈狀況;而當驅動壓力太大時,則會造成Lennard_Jones勢能模擬的不準確性。從各種速度分佈圖也可清楚的觀察到滑動現象,這也符合了Maxwell在動能理論中所預測的結果。
由本文的模擬結果看來,流場性質不但和流體種類與其勢能函數有關,且和平板分子勢能函數的種類有關。所以平板與流體之合適的勢能函數之選擇對模擬結果有很大的影響。
The flow field, like Couette and Poiseuille flow, are often adopted to discuss and study flow physics. Liquid density fluctuation near channel surface and the velocity slip at surface are two major differences between microscopic and macroscopic flow. In this paper, we use molecular dynamics simulation (MD) to simulate pressure-driven nano-channel flow, in which the widths of the pore are ten or twenty two times to the diameter of liquid Argon molecule. According to the particles distribution profile, we can see that Cu particles of the channel will attract liquid Argon molecules to form an adsorption layer near the channel. And from the density profile, it shows the sudden increase in density near channel boundary because of the adsorption interaction.
From the computed velocity profile, when setting small and large pressure force, we can obtain either the parabolic distribution in lamier flow or flat distribution in turbulence flow. But when the pressure force becomes too large, Lennard_Jones potential will be fail to simulate the flow field. Velocity slip is clearly observed in all velocity profiles in this work, and this result is confirmed by the Maxwell prediction in his Kinetic theory.
It can be concluded from this study that the properties of flow field are affected not only by the kind of liquids and its potential, but also by the potential function of the channel molecules. Correct choice of potential to channel and liquid particles plays an important role in simulation results.
1.C.C. Wang, A.R. Lopez, M. J. Stevens, S.J. Plimpton, “Molecular dynamics Simulations of Microscale Fluid Transport”, Sandia National Lab, U.S.A (1998).
2.Kerson Huano, “Statistical Mechanics”, John Wiley&Sons,Inc (1928).
3.劉伊清,”以分子動力學方法研究微容器之流體行為”,國立成功大學,工程科學研究所碩士論文 (2002).
4.Gibson, J.B. Goland, A.N. Milgram, et.al, Phys.Rev.120 (1960) 1229.
5.J.E. Lennard_Jones, “The Determination of Molecular Fields, I. From the Variation of Viscosity of a Gas with Temperature ”, Proc.Roy.Soc. (Lond),106A,441 (1924); “The Determination of Molecular Fields, Ⅱ.From the Equation of State of a Gas”, Proc.Roy.Soc.(Lond), 106A,463 (1924.)
6.Girifalco, L.A. and Weizer, V.G.., “Application of the Morse Potential Function to Cubic Materials”, Phys.Rew, 114 No3, P 687-690,(1959).
7.L.Verlet, “Computer Experiments on Classical Fluid. I. Thermodynamical Properties of Lennard_Jones Fluids”, Mol.Phys.Rev,Vol 159,P 98 (1967).
8.J.M.Haile, “Molecular Dynamics Simulation ”, John Wiley&Sons,Inc (1992).
9.Donald Greenspan, “Molecular study of turbulence in three dimensional cavity flow”, Comput.Methods.Mech.Energy, 190 P 4231-4244 (2001).
10.Donald Greenspan, Comput.Methods.Appl.Mesh.Energy, 188 (2000) 543-552.
11.Joel Koplik, Jayanth R. Banavar, “Corner flow in the Sliding plate problem”, Phys. Fluids , Vol 7, P 3118 (1995).
12.B.D.Todd, D.J.Evans, and P.J.Davis, “Pressure tensor for Inhomogeneous Fluids”, Phys.Rev. E 52, P 1627 (1995).
13.A.Jabbarzadeh,et.al., “Wall Slip in the molecular dynamics simulation of thin films of hexadecane”, J.Chem.Phys, Vol 110, P 2612 (1999).
14.W.T.Ashurst, W.G.Hoover, “Dense-fluid shear viscosity via nonequilibrium molecular dynamics”, Phys.Rev.E, Vol 11, P 658 (1973).
15.E.Akhmatskaya ,et.al, “A study of viscosity inhomogeneity in porous media”, J.Chem.Phys, Vol 106, P 4684 (1997).
16.Berk Hess, “Determining the shear viscosity of model liquids from molecular dynamics simulations”, J.Chem.Phys, Vol 116, P 209 (2002).
17.Joel Koplik, et.al, “Molecular Dynamics of Poiseuille Flow and Moving Contact Lines”, Phys.Rev.Letters, Vol 60, P 1282 (1988).
18.Karl P.Travis, Keith E.Gubbins, “Poiseuille flow of Lennard_Jones fluids in narrow slit pores”, J.Chem.Phys, Vol 112, P 1984 (2000).
19.Karl P.Travis, B.D.Todd, and Denis J.Evans, “Departure from Navier-Stokes hydrodynamics in confined liquids”, Phys.Rev.E, Vol 55, P 4288 (1997).
20.Karl P.Travis, D.J.Evans, “Molecular spin in a fluid undergoing Poiseuille flow”, Phys.Rev.E, Vol 55, P 1566 (1997).
21.朱訓鵬,”分子動力學與平行運算於奈米薄膜沉積模擬之應用”,國立成功大學,機械工程研究所博士論文 (2002).
22.Jacan N.Israelachvili, “Intermolecular and Surface Forces”, second edition, Academic Press, (1992).
23.G.C.Maitland, M.Rigby, et.al, “Intermolecular Forces”, Oxford Vniversity Press, London (1987).
24.D.C.Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press (1997).
25.F.London, “Properties and Applications of Molecular Forces”, Zeit-Physik. Chem.B, 11,222 (1930).
26.Te-Hua Fang, Cheng-I Weng, “Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale”, Nanotechnology, 11(2000) 148-153.
27.David J.Griffiths, “Introduction to Quantum Mechanics”, Prentice Hall,Inc. (1994).
28.D.W.Heermann, “Computer Simulation Method”, Springer-Verlag, Berlin (1990).
29.C.W.Gear, “Numerical Initial Value Problems in Ordinary Differential Equation”, Prentice-Hall, Englewood Cliffs, NJ, Ch9 (1971).
30.A.Rahman, “Correlations in the Motion of Atoms in Liquid Argon”, Phys.Rev.136A 405 (1964).
31.Xi-Jun Fan, et.al, ”Molecular dynamics simulation of a liquid in a complex nano channel flow”, Phys.Fluid, Vol 14, P 1146 (2002).
32.B.D.Todd, Denis J.Evans, “The heat flux vector for highly inhomogeneous nonequilibrium fluids in very narrow pores”, J.Chem.Phys, Vol 103, P 9804 (1995).
33.Karl.P.Travis, et.al, ”Poiseuille flow of Molecular fluids”, Physica A, Vol 240, P 315-327 (1997).
34.J.S.Rowlinson, “In Liquids and Liquids Mixtures”, Butterworth Scientific, London (1982).
35.Peter A.Thompson and Mark O.Robbins, “Simulations of Contact-Line Motion: Slip and the Dynamic Contact Angle”, Phys.Rev.Lett, Vol 63, P 766 (1989).
36.周彥博,黃吉川,張自恭,”微觀尺度下平板剪切流之窩流運動行為”,第九屆全國計算流體力學學術研討會,P. 545.
37.I.Bitsanis, T.K.Vanderlick, M.tirrell, “A tractable molecular theory of flow in strongly inhomogeneous fluids”, J.Chem.Phys, Vol 89, P 3152 (1988).
38.I.Bitsanis, J.J.Magda, M.Tirrell, H.T.Davis, “Molecular dynamics of flow in micropores”, J.Chem.Phys, Vol 87, P 1733 (1987).
39.Jerome Delhommelle and Denis J.Evans, “Configurational temperature profile in confined fluids. I. Atomic fluid”, J.Chem.Phys, Vol 114, P 6229 (2001).
40.J.Koplik and J.R.Banavar, Annu.Rev.Fluid Mech, 27, P 257 (1995).
41.Jerome Delhommelle and Denis J.Evans, “Configurational temperature profile in confined fluids. Ⅱ. Molecular fluids”, J.Chem.Phys, Vol 114, P 6236 (2001).
42.Uwe Heinbuch and Johann Fischer, “Liquid flow in pores: Slip, no-slip, or multilayer sticking”, Phys.Rev.A, Vol 40, P 1144 (1989).
43.Joel Koplik, Jayanth R.Banavar and Jorge F.Willemsen, “Molecular dynamics of fluid flow at solid surface”, Phys.fluids, Vol 1, P 7810 (1989).
44.L.Hannon, G.C.Lie and E.Clementi, “Molecular Dynamics Simulation of Channel Flow”, Phys.Lett, No 119, P 174 (1986).
45.Carlo Trozzi and Giovanni Ciccotti, “Stationary nonequilibrium state by molecular dynamics.Ⅱ.Newton’s Law”, Phys.Rev.A, Vol 29, P 916 (1984).
46.A.Jabbarzadeh, J.D.Atkinson, R.I.Tanner, “Rheological properties of thin films by molecular dynamics simulations”, J.Non-Newton Fluids.Mech, Vol 69, P 169, (1997).
47.Ioannis Bitsanis, Susan A.Somers, H.Ted Davis, and Matthew Tirrell, “Microscopic dynamics of flow in molecularly narrow pores”, J.Chem.Phys, Vol 93, P 3427 (1990).
48.Xue-Dong Din and Efstathios E.Michaelides, “Kinetic theory and molecular dynamics simulations of microscopic flows”, Phys.Fluids, Vol 9, P 3915 (1997).
49.Peter A.Thompson and Sandra M.Troian, “A general boundary condition for liquid flow at solid surfaces”, Nature, Vol 389, P 360 (1997).
50.Peter A.Thompson and Mark O.Robbins, “Shear flow near solids: Epitaxial order and flow boundary conditions”, Phys.Rev.A, Vol 41, P 6830 (1990).
51.Susan A.Somers and H.Ted Davis, “Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces”, J.Chem.Phys, Vol 96, P 5389 (1992).
52.D.K.Bhatta and G.C.Lie, “Molecular Dynamics Simulations of Nonequilibrium Heat and Momentum Transport in Very Dilute Gases”, Phys.Rev.Lett, Vol 62, P 897 (1989).
53.Gan Mo and Franz Rosenberger, “Molecular dynamics simulation of flow in a two dimensional channel with atomically rough walls”, Phys.Rev.A, Vol 42, P 4688 (1990).
54.M.Sun and C.Ebner, “Molecular Dynamics Study of Flow at a Fluid Wall Interface”, Phys.Rev.Lett, Vol 69, P 3491 (1992).
55.R.Qiao and N.R.Aluru, “Ion concentrations and velocity profile in nanochannel electroosmotic flows”, J.Chem.Phys, Vol 118, P 4692 (2003).
56.J.H.Irving and J.G. Kirkwood, “The Statistical Mechanics of Transport Process.Ⅳ. The Equation of Hydrodynamics”, J.Chem.Phys, Vol 18, P 817 (1950).