| 研究生: |
侯祈甄 Hou, Chi-Chen |
|---|---|
| 論文名稱: |
抑制TGF beta誘導人類口腔癌SAS細胞株之轉移研究 The study of suppress the metastasis activity of a TGF beta-induced human oral cancer SAS cells |
| 指導教授: |
蕭世裕
Shaw, Shyh-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 口腔癌 、乙型轉型生長因子-1 、基質金屬蛋白酶 |
| 外文關鍵詞: | TGF-β, SAS, MMP-2, Doxycycline, TMC-1 |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌細胞轉移是導致癌症患者死亡的主要原因之一,而轉移的發生與基質金屬蛋白酶(MMP)的增加有關,特別是在癌細胞中高度表達的MMP-2和MMP-9,它們能夠降解細胞外基質(ECM),進而促進癌細胞的轉移和侵襲,因此抑制MMP的表達被認為是抗癌治療的一種有效策略。本研究中,我們使用了TGF-β作為誘導劑來誘導SAS人類口腔癌細胞株的MMP-2蛋白,並使用DOX以及TMC-1作為抑制劑,探討此兩種化合物對TGF-β誘導的MMP-2抑制效果。
根據明膠蛋白酵素電泳及西方墨點法的結果,DOX和TMC-1均能顯著下調TGF-β誘導的MMP-2表現,此外,我們還發現DOX和TMC-1能夠有效抑制SAS細胞的轉移與侵襲能力。綜合上述結果,我們的研究表明DOX和TMC-1可以有效抑制SAS細胞中TGF-β誘導的MMP-2的表達、轉移與侵襲。這使得DOX在「舊藥新用」的概念下,與TMC-1共同具有作為抗口腔癌轉移的潛在藥物的價值。
Metastasis is one of the major causes of death in cancer patients, and its occurrence is associated with the upregulation of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, which are highly expressed in cancer cells. These MMPs can degrade the extracellular matrix (ECM), thereby promoting cancer cell invasion and metastasis. Therefore, inhibit the MMP expression is considered an effective strategy for cancer treatment. In this study, we used TGF-β as an inducer to stimulate MMP-2 protein expression in SAS human oral cancer cell lines and employed DOX and TMC-1 as inhibitors to explore their effects on TGF-β-induced MMP-2 suppression. According to the results from gelatin zymography and Western blot analysis, both DOX and TMC-1 significantly downregulated TGF-β-induced MMP-2 expression. Additionally, we found that DOX and TMC-1 effectively inhibited the migration and invasion abilities of SAS cells. In summary, we found that DOX and TMC-1can be effective. These findings suggest that DOX and TMC-1 have potential applications in the treatment of oral cancer by suppressing TGF-β-induced MMP-2 expression, migration, and invasion in SAS cells.
廖靜洳(2017)。四環黴素衍生物對口腔鱗狀癌細胞內基質金屬蛋白酶-9的抑制研究,碩士論文,國立成功大學化學系。
曾柏翔(2022)。抑制TGF-β1誘導口腔鱗狀癌細胞之轉移研究,碩士論文,國立成功大學化學系。
Aashaq, S., Batool, A., Mir, S. A., Beigh, M. A., Andrabi, K. I., & Shah, Z. A. (2022). TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. Journal of Cellular Physiology, 237(1), 59-85.
Cabral-Pacheco, G. A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuña, J. M., Perez-Romero, B. A., Guerrero-Rodriguez, J. F., et al. (2020). The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci, 21(24).
Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 65(2), 232-260 ; second page, table of contents.
Clark, I. A., Swingler, T. E., Sampieri, C. L., & Edwards, D. R. (2008). The regulation of matrix metalloproteinases and their inhibitors. International Journal of Biochemistry & Cell Biology, 40(6-7), 1362-1378.
Di Nezza, L. A., Misajon, A., Zhang, J., Jobling, T., Quinn, M. A., Ostör, A. G., et al. (2002). Presence of active gelatinases in endometrial carcinoma and correlation of matrix metalloproteinase expression with increasing tumor grade and invasion. Cancer, 94(5), 1466-1475.
Duggar, B. M. (1948). AUREOMYCIN - A PRODUCT OF THE CONTINUING SEARCH FOR NEW ANTIBIOTICS. Annals of the New York Academy of Sciences, 51(2), 177-&.
Finlay, A. C., Hobby, G. L., Pan, S. Y., Regna, P. P., Routien, J. B., Seeley, D. B., et al. (1950). TERRAMYCIN, A NEW ANTIBIOTIC. Science, 111(2874), 85-85.
Golub, L. M., Ramamurthy, N. S., McNamara, T. F., Greenwald, R. A., & Rifkin, B. R. (1991). Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med, 2(3), 297-321.
Hao, Y., Baker, D., & Ten Dijke, P. (2019). TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci, 20(11).
Hata, A., & Chen, Y. G. (2016). TGF-β Signaling from Receptors to Smads. Cold Spring Harb Perspect Biol, 8(9).
Laronha, H., & Caldeira, J. (2020). Structure and Function of Human Matrix Metalloproteinases. Cells, 9(5).
Lin, H.-C., & Cheng, P.-W. (2014). Project to Improve the Follow-up Rate for Patients with Abnormal Oral Mucosal Screenings at a Regional Hospital. The Journal of Nursing, 61(2), 24-32.
Maeta, H., Ohgi, S., & Terada, T. (2001). Protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinase 1 and 2 in papillary thyroid carcinomas. Virchows Archiv-an International Journal of Pathology, 438(2), 121-128.
Nakamura, R., Kayamori, K., Oue, E., Sakamoto, K., Harada, K., & Yamaguchi, A. (2015). Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma. Biochem Biophys Res Commun, 458(4), 777-782.
Nieto, M. A., Huang, R. Y., Jackson, R. A., & Thiery, J. P. (2016). EMT: 2016. Cell, 166(1), 21-45.
Park, C. S., Kim, S. H., & Lee, C. K. (2020). Immunotherapy of Autoimmune Diseases with Nonantibiotic Properties of Tetracyclines. Immune Netw, 20(6), e47.
Rosen, R. D., & Sapra, A. (2024). TNM Classification StatPearls. Treasure Island (FL): StatPearls Publishing.
Sanchez Mejia, R. O., Ona, V. O., Li, M., & Friedlander, R. M. (2001). Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery, 48(6), 1393-1399; discussion 1399-1401.
Sapadin, A. N., & Fleischmajer, R. (2006). Tetracyclines: Nonantibiotic properties and their clinical implications. Journal of the American Academy of Dermatology, 54(2), 258-265.
Shen, L.-C., Chen, Y.-K., Lin, L.-M., & Shaw, S.-Y. (2010). Anti-invasion and anti-tumor growth effect of doxycycline treatment for human oral squamous-cell carcinoma – In vitro and in vivo studies. Oral Oncology, 46(3), 178-184.
Su, S. C., Hsieh, M. J., Yang, W. E., Chung, W. H., Reiter, R. J., & Yang, S. F. (2017). Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res, 62(1).
TAKAHASHI, K., PODYMA-INOUE, K. A., TAKAO, C., YOSHIMATSU, Y., MURAMATSU, T., INAZAWA, J., et al. (2018). Regulatory role of transforming growth factor-β signals in the migration and tumor formation of HOC313-LM cells, an oral squamous cell carcinoma. J. Stomatol. Soc. Jpn., 85(2), 52-61.
Van Wart, H. E., & Birkedal-Hansen, H. (1990). The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A, 87(14), 5578-5582.
Visse, R., & Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res, 92(8), 827-839.
Wang, S.-Q., Zhao, B.-X., Liu, Y., Wang, Y.-T., Liang, Q.-Y., Cai, Y., et al. (2016). New application of an old drug: Antitumor activity and mechanisms of doxycycline in small cell lung cancer. Int J Oncol, 48(4), 1353-1360.
Wu, Y., & Zhou, B. P. (2008). New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim Biophys Sin (Shanghai), 40(7), 643-650.
Yan, C. H., & Boyd, D. D. (2007). Regulation of matrix metalloproteinase gene expression. Journal of Cellular Physiology, 211(1), 19-26.
Zhang, L., Xu, L., Zhang, F., & Vlashi, E. (2017). Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle, 16(8), 737-745.
Zhang, Y. E. (2009). Non-Smad pathways in TGF-β signaling. Cell Research, 19(1), 128-139.
校內:2029-07-20公開