| 研究生: |
陳柏霖 Chen, Po-Lin |
|---|---|
| 論文名稱: |
氧化銦鎵鋅化學電阻式氣體感測器之研製 Fabrication of Chemiresistive In-Ga-Zn-O (IGZO) Gas Sensors |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 共同指導教授: |
林坤緯
Lin, Kun-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 氣體感測器 、氧化銦鎵鋅 、奈米粒子 |
| 外文關鍵詞: | Gas sensors, Indium Gallium Zinc Oxide (IGZO), Nanoparticles (NPs) |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,基於高靈敏度,結構簡單,製造成本低的優點,許多種金屬氧化物半導體(MOS)感測器已被廣泛探討。氧化銦鎵鋅(IGZO)是一種新型n型半導體材料,由於固有的高電子遷移率( > 10 cm2/v·s)、柔韌性、低溫兼容製程的特徵,已經廣泛使用於LCD薄膜電晶體(TFT)技術中。然而,在電阻式氣體感測器的應用上,此材料的相關文獻相對較少。因此,在本論文中,分別利用三種不同的金屬(Pd、Pt、Au)修飾IGZO薄膜表面,最後,由實驗得知,於檢測氫氣、氨氣和甲醛都有良好的性能。本研究也運用掃描電子顯微鏡(SEM),X射線繞射儀(XRD),能量色散X射線光譜儀(EDS)、 穿透式電子顯微鏡(TEM)和原子力分析顯微鏡(AFM)來分析氧化銦鎵鋅(IGZO)電阻式氣體感測器的元件結構,表面形貌、金屬奈米粒子的大小和元素組成。
In recent years, many kinds of metal oxide semiconductor sensors have been extensively investigated due to the high sensitivity, simple structures, and low-cost fabrication. Indium gallium zinc oxide (IGZO) is a new n-type semiconductor material. Because of its inherent characteristics of high electron mobility (> 10 cm2/v·s), flexibility, and low-temperature compatible fabrication processes, it has been widely used in LCD displays as a transparent thin film transistor (TFT). However, the application of gas sensors with this material is relatively less. Thus, in this study, three different metals (Pd, Pt, Au) were used to modify the surface of the IGZO thin film, respectively. Eventually, in our experiments, the studied devices have good sensing characteristics of hydrogen, ammonia, and formaldehyde. This study will also analyze the device structure, surface morphology and elemental composition of IGZO based gas sensors with scanning electron microscope (SEM), X-ray diffractometer (XRD), energy dispersion X-ray spectrometer (EDS), transmission electron microscope (TEM), and atomic force microscope (AFM).
[1] M. Hakim, Y.Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, and H. Haick, "Volatile organic compounds of lung cancer and possible biochemical pathways," Chem. Rev., vol. 112, pp. 5949-5966, 2012.
[2] Y. Cheng, H. He, C. Yang, G. Zeng, X. Li, H. Chen, and G. Yu, "Challenges and solutions for biofiltration of hydrophobic volatile organic compounds," Biotechnol. Adv., vol. 34, pp. 1091-1102, 2016.
[3] J.B. Gilman, B.M. Lerner, W.C. Kuster, and J.A. de Gouw, "Source signature of volatile organic compounds from oil and natural gas operations in Northeastern Colorado," Environ. Sci. Technol., vol. 47, pp. 1297-1305, 2013.
[4] P. Tyagi, A. Sharma, M. Tomar, and V. Gupta, "Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor," Sens. Actuators B, Chem., vol. 224, pp. 282-289, 2016.
[5] F. Gu, R. Nie, D. Han, and Z. Wang, "In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature," Sens. Actuators B, Chem., vol. 219, pp. 94-99, 2015.
[6] B. Urasinska-Wojcik, T.A. Vincent, M.F. Chowdhury, and J.W. Gardner, "Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment," Sens. Actuators B, Chem., vol. 239, pp. 1051-1059, 2017.
[7] X. Yang, V. Salles, Y.V. Kaneti, M. Liu, M. Maillard, C. Journet, X. Jiang, and A. Brioude, "Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning," Sens. Actuators B, Chem., vol. 220, pp. 1112-1119, 2015.
[8] P.G. Su and S.L. Peng, "Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films," Talanta, vol. 132, pp. 398-405, 2015.
[9] Y. Wang, J. Liu, X. Cui, Y. Gao, J. Ma, Y. Sun, P. Sun, F. Liu, X. Liang, T. Zhang, and G. Lu, "NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3," Sens. Actuators B, Chem., vol. 238, pp. 473-481, 2017.
[10] J. Qi, H. Zhang, S. Lu, X. Li, M. Xu, and Y. Zhang, "High performance indium-doped ZnO gas sensor," J. Nanomaterials, vol. 16, pp. Article 74, 2015.
[11] C.Y. Chi, H.I. Chen, W.C. Chen, C.H. Chang, and W.C. Liu, "Formaldehyde sensing characteristics of an aluminum-doped zinc oxide (AZO) thin-film-based sensor," Sens. Actuators B, Chem., vol. 255, pp. 3017-3024, 2018.
[12] H.I. Chen, C.Y. Hsiao, W.C. Chen, C.H. Chang, T.C. Chou, I.P. Liu, K.W. Lin, and W.C. Liu, "Characteristics of a Pt/NiO thin film-based ammonia gas sensor," Sens. Actuators B, Chem., vol. 256, pp. 962-967, 2018.
[13] S.R. Gawali, V.L. Patil, V.G. Deonikar, S.S. Patil, D.R. Patil, P.S. Patil, and J. Pant, "Ce doped NiO nanoparticles as selective NO2 gas sensor," J. Phys. Chem. Solids, vol. 114, pp. 28-35, 2018.
[14] Y. Li, N. Chen, D. Deng, X. Xing, X. Xuechun, and Y. Wang, "Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity," Sens. Actuators B, Chem., vol. 238, pp., 2016.
[15] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[16] D.J. Yang, G.C. Whitfield, N.G. Cho, P.S. Cho, I.D. Kim, H.M. Saltsburg, and H.L. Tuller, "Amorphous InGaZnO4 films: gas sensor response and stability," Sens. Actuators B, Chem., vol. 171-172, pp. 1166-1171, 2012.
[17] H. Chen, W. Jiang, L. Zhu, and Y. Yao, "Amorphous In–Ga–Zn–O powder with high gas selectivity towards wide range concentration of C2H5OH," Sensors, vol. 17, pp., 2017.
[18] N.G. Cho and I.D. Kim, "NO2 gas sensing properties of amorphous InGaZnO4 submicron-tubes prepared by polymeric fiber templating route," Sens. Actuators B, Chem., vol. 160, pp. 499-504, 2011.
[19] C.H. Wu, G.J. Jiang, K.W. Chang, C.W. Lin, and K.L. Chen, "Highly sensitive amorphous In–Ga–Zn–O films for ppb-level ozone sensing: effects of deposition temperature," Sens. Actuators B, Chem., vol. 211, pp. 354-358, 2015.
[20] T. Hübert, L. Boon-Brett, G. Black, and U. Banach, "Hydrogen sensors – a review," Sens. Actuators B, Chem., vol. 157, pp. 329-352, 2011.
[21] L. Schlapbach, and A. Züttel, "Hydrogen-storage materials for mobile applications," Nature, vol. 414, pp. 353-358, 2001.
[22] S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, "Distributed hydrogen determination with fiber-optic sensor," Sens. Actuators B, Chem., vol. 108, pp. 508-514, 2005.
[23] N.H. Al-Hardan, M.J. Abdullah, and A.A. Aziz, "Sensing mechanism of hydrogen gas sensor based on rf-sputtered ZnO thin films," Int. J. Hydrogen Energy, vol. 35, pp. 4428-4434, 2010.
[24] D.D. Nguyen, D.V. Dang, and D.C. Nguyen, "Hydrothermal synthesis and NH3 gas sensing property of WO3 nanorods at low temperature," Adv. Nat. Sci NanoSci., vol. 6, pp. 035006, 2015.
[25] P.R. Chung, C.T. Tzeng, M.T. Ke, and C.Y. Lee, "Formaldehyde gas sensors: a review," Sensors (Basel), vol. 13, pp. 4468-4484, 2013.
[26] T. Salthammer, S. Mentese, and R. Marutzky, "Formaldehyde in the indoor environment," Chem. Rev., vol. 110, pp. 2536-2572, 2010.
[27] C.W. Lin, K.L. Huang, K.W. Chang, J.H. Chen, K.L. Chen, and C.H. Wu, "Ultraviolet photodetector and gas sensor based on amorphous In-Ga-Zn-O film," Thin Solid Films, vol. 618, pp., 2016.
[28] P. Chaung, T.C. Fung, B. Mullins, K. Nomura, T. Kamiya, H.P. Shieh, H. Hosono, and J. Kanicki, "Photosensitivity of amorphous IGZO TFTs for active-matrix flat-panel displays," Sid Symposium Digest of Technical Papers, vol. 39, pp., 2008.
[29] H. Hsu, C. Chang, and C. Cheng, "A flexible IGZO thin-film transistor with stacked TiO2-Based dielectrics fabricated at room temperature," IEEE Electron Device Lett., vol. 34, pp. 768-770, 2013.
[30] C. Chiu, S.P. Chang, and C. Lu, "High-mobility a-IGZO thin-film transistor using Ta2O5 gate dielectric," 2010.
[31] K. Hoshino, D. Hong, H. Chiang, and J. Wager, "Constant-voltage-bias stress testing of a-IGZO thin-film transistors," Electron Devices, IEEE Transactions on, vol. 56, pp. 1365-1370, 2009.
[32] Y. Kumaresan, H. Kim, Y. Jeong, Y. Pak, S. Cho, R. Lee, N. Lim, and G.Y. Jung, "Ultra-high sensitivity to low hydrogen gas concentration with Pd-decorated IGZO film," IEEE Electron Device Lett., vol. 38, pp. 1735-1738, 2017.
[33] C.H. Wu, K.W. Chang, Y.N. Li, Z.Y. Deng, K.L. Chen, C.C. Jeng, R.J. Wu, and J.H. Chen, "Improving the sensitive and selective of trace amount ozone sensor on indium-gallium-zinc oxide thin film by ultraviolet irradiation," Sens. Actuators B, Chem., vol. 273, pp. 1713-1718, 2018.
[34] C.H. Wu, G.J. Jiang, K.W. Chang, Z.Y. Deng, Y.N. Li, K.L. Chen, and C.C. Jeng, "Analysis of the sensing properties of a highly stable and reproducible ozone gas sensor based on amorphous In-Ga-Zn-O thin film," Sensors, vol. 18, pp., 2018.
[35] T.Y. Chen, H.I. Chen, C.S. Hsu, C.C. Huang, J.S. Wu, P.C. Chou, and W.C. Liu, "Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration," Sens. Actuators B, Chem., vol. 221, pp. 491-498, 2015.
[36] C. Liu, Q. Kuang, Z. Xie, and L. Zheng, "The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the {221} high-index faceted SnO2 octahedra," CrystEngComm, vol. 17, pp. 6308-6313, 2015.
[37] Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, "High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd," Sens. Actuators B, Chem., vol. 83, pp. 195-201, 2002.
[38] H.Y. Lai, and C.H. Chen, "Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-decorated In2O3 flower-like nanobundles," Journal of Materials Chemistry, vol. 22, pp. 13204-13208, 2012.
[39] I.P. Liu, C.H. Chang, T.C. Chou, and K.W. Lin, "Ammonia sensing performance of a platinum nanoparticle-decorated tungsten trioxide gas sensor," Sens. Actuators B, Chem., vol. 291, pp. 148-154, 2019.
[40] P.C. Chou, H.I. Chen, I.P. Liu, C.C. Chen, J.K. Liou, K.S. Hsu, and W.C. Liu, "On the Ammonia Gas Sensing Performance of a rf sputtered NiO thin-film sensor," IEEE Sens. J., vol. 15, pp. 3711-3715, 2015.
[41] M. Penza, M.A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, "Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor," Sens. Actuators B, Chem., vol. 50, pp. 9-18, 1998.
[42] C.N. Xu, N. Miura, Y. Ishida, K. Matsuda, and N. Yamazoe, "Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element," Sens. Actuators B, Chem., vol. 65, pp. 163-165, 2000.
[43] T.C. Chou, C.H. Chang, C. Lee, and W.C. Liu, "Ammonia sensing characteristics of a tungsten trioxide thin-film-based sensor," IEEE Trans. Electron Devices, vol. 66, pp. 696-701, 2019.
[44] C. Rout, M. Hegde, A. Govindaraj, and C. Rao, "Ammonia sensors based on metal oxide nanostructures," Nanotechnology, vol. 18, pp. 205504, 2007.
[45] E. Llobet, G. Molas, P. Molinàs, J. Calderer, X. Vilanova, J. Brezmes, J. Sueiras, and X. Correig, "Fabrication of highly selective tungsten oxide ammonia sensors," J. Electrochem. Soc., vol. 147, pp. 776-779, 2000.
[46] M. Penza, C. Martucci, and G. Cassano, "NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers," Sens. Actuators B, Chem., vol. 50, pp. 52-59, 1998.
[47] Y. Kahng, W. Lu, R. Tobin, R. Loloee, and R. Ghosh, "The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study," J. Appl. Phys., vol. 105, pp. 064511-064511, 2009.
[48] A. De Marcellis, G. Ferri, P. Mantenuto, L. Giancaterini, and C. Cantalini, "Hydrogen resistive gas sensor and its wide-range current-mode electronic read-out circuit," IEEE Sens. J., vol. Early Access Articles, pp., 2013.
[49] R. Ab Kadir, Z. Li, A.Z. Sadek, R. Abdul Rani, A.S. Zoolfakar, M.R. Field, J.Z. Ou, A.F. Chrimes, and K. Kalantar-zadeh, "Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures," The Journal of Physical Chemistry C, vol. 118, pp. 3129-3139, 2014.
[50] N. Yamazoe, K. Suematsu, and K. Shimanoe, "Surface chemistry of neat tin oxide sensor for response to hydrogen gas in air," Sens. Actuators B, Chem., vol. 227, pp. 403-410, 2016.
[51] M. Stankova, X. Vilanova, E. Llobet, J. Calderer, C. Bittencourt, J.J. Pireaux, and X. Correig, "Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors," Sens. Actuators B, Chem., vol. 105, pp. 271-277, 2005.
[52] T. Chen, Q.J. Liu, Z.L. Zhou, and Y.D. Wang, "The fabrication and gas-sensing characteristics of the formaldehyde gas sensors with high sensitivity," Sens. Actuators B, Chem., vol. 131, pp. 301-305, 2008.
[53] S. Khoobiar, "Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles," J. Phys. Chem., vol. 68, pp. 411-412, 1964.
[54] M. Boudart, M.A. Vannice, and J.E. Benson, "Adlineation, portholes and spillover," Z. Phys. Chem., vol. 64, pp. 171-177, 1969.
[55] K. Tsu, and M. Boudart, "Recombination of atoms at the surface of thermocouple probes," Can. J. Chem., vol. 39, pp. 1239-1246, 2011.
[56] C.R. Henry, C. Chapon, and C. Duriez, "Precursor state in the chemisorption of CO on supported palladium clusters," J. Chem. Phys., vol. 95, pp. 700-705, 1991.
[57] M. Bowker, “‘Seeing’ the active site in catalysis. stm and molecular beam studies of surface reactions,” Studies in Surface Science and Catalysis, vol. 101, pp. 287-295, 1996.
[58] H.M. Cheng, Q.H. Yang, and C. Liu, "Hydrogen storage in carbon nanotubes," Carbon, vol. 39, pp. 1447-1454, 2001.
[59] C.E. Thomas, B.D. James, F.D. Lomax, and I.F. Kuhn, "Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?," Int. J. Hydrogen Energy, vol. 25, pp. 551-567, 2000.
[60] M.N. Carcassi, and F. Fineschi, "Deflagrations of H2–air and CH4–air lean mixtures in a vented multi-compartment environment," Energy, vol. 30, pp. 1439-1451, 2005.
[61] C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, and T. Kerdcharoen, "Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing," Sensors (Basel), vol. 10, pp. 7705-7715, 2010.
[62] X. Xing, T. Chen, R. Zhao, Z. Wang, and Y. Wang, "A low temperature butane gas sensor used Pt nanoparticles-modified AZO macro/mesoporous nanosheets as sensing material," Sens. Actuators B, Chem., vol. 254, pp. 227-238, 2018.
[63] M. Afshar, E.M. Preiß, T. Sauerwald, M. Rodner, D. Feili, M. Straub, K. König, A. Schütze, and H. Seidel, "Indium-tin-oxide single-nanowire gas sensor fabricated via laser writing and subsequent etching," Sens. Actuators B, Chem., vol. 215, pp. 525-535, 2015.
[64] C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, J. Zheng, and G. Lu, "Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure," Sens. Actuators B, Chem., vol. 220, pp. 59-67, 2015.
[65] J. Moon, J.-A. Park, S.-J. Lee, T. Zyung, and I.-D. Kim, "Pd-doped TiO2 nanofiber networks for gas sensor applications," Sens. Actuators B, Chem., vol. 149, pp. 301-305, 2010.
[66] L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, "ZnO nanorod gas sensor for ethanol detection," Sens. Actuators B, Chem., vol. 162, pp. 237-243, 2012.
[67] S.C. Chan, and M.A. Barteau, "Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition," Langmuir, vol. 21, pp. 5588-5595, 2005.
[68] J. Zhang, X. Liu, S. Wu, M. Xu, X. Guo, and S. Wang, "Au nanoparticle-decorated porous SnO2 hollow spheres: a new model for a chemical sensor," Journal of Materials Chemistry, vol. 20, pp. 6453-6459, 2010.
[69] C. Lee, and W.C. Liu, "A high-performance Pd nanoparticle (NP)/WO3 thin film-based hydrogen sensor," IEEE Electron Device Lett., vol. PP, pp. 1-1, 2019.
[70] A. Sutka, M. Stingaciu, G. Mezinskis, and A. Lusis, "An alternative method to modify the sensitivity of p-type NiFe2O4 gas sensor," Journal of Materials Science, vol. 47, pp. 2856-2863, 2012.
[71] J.A. Woo, D.T. Phan, Y.W. Jung, and K.J. Jeon, "Fast response of hydrogen sensor using palladium nanocube-TiO2 nanofiber composites," Int. J. Hydrogen Energy, vol. 42, pp. 18754-18761, 2017.
[72] A. Umar, J.-H. Lee, and R. Kumar, "Highly sensitive ethanol gas sensors based on Ag-doped ZnO nanocones," Nanoscience and Nanotechnology Letters, vol. 8, pp. 241-246, 2016.
[73] B.Y. Kim, J.S. Cho, J.W. Yoon, C.W. Na, C.S. Lee, J.H. Ahn, Y.C. Kang, and J.H. Lee, "Extremely sensitive ethanol sensor using Pt-doped SnO2 hollow nanospheres prepared by kirkendall diffusion," Sens. Actuators B, Chem., vol. 234, pp. 353-360, 2016.
[74] H. Yin, C. Song, Z. Wang, H. Shao, Y. Li, H. Deng, Q. Ma, and K. Yu, "Self-assembled vanadium oxide nanoflakes for p-type ammonia sensors at room temperature," Nanomaterials (Basel), vol. 9, pp. 317, 2019.
[75] S. Das, S. Majumdar, R. Kumar, S. Ghosh, and D. Biswas, "Thermodynamic analysis of acetone sensing in Pd/AlGaN/GaN heterostructure schottky diodes at low temperatures," Scripta Mater., vol. 113, pp. 39-42, 2016.
[76] M. Takata, D. Tsubone, and H. Yanagida, "Dependence of electrical conductivity of ZnO on degree of sintering," J. Am. Ceram. Soc., vol. 59, pp. 4-8, 1976.
[77] D. Zhang, Y.e. Sun, C. Jiang, and Y. Zhang, "Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route," Sens. Actuators B, Chem., vol. 242, pp. 15-24, 2017.
[78] U.T. Nakate, R. Ahmad, P. Patil, Y.T. Yu, and Y.-B. Hahn, "Ultra thin NiO nanosheets for high performance hydrogen gas sensor device," Appl. Surf. Sci., vol. 506, pp. 144971, 2020.
[79] I.H. Kadhim, H.A. Hassan, and Q.N. Abdullah, "Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates," Nano-Micro Letters, vol. 8, pp. 20-28, 2016.
[80] A. Sanger, A. Kumar, A. Kumar, and R. Chandra, "Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls," Sens. Actuators B, Chem., vol. 234, pp. 8-14, 2016.
[81] A. Sanger, P.K. Jain, Y.K. Mishra, and R. Chandra, "Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application," Sens. Actuators B, Chem., vol. 242, pp. 694-699, 2017.
[82] N. Singh, A. Kumar, and D. Kaur, "Hydrogen gas sensing properties of platinum decorated silicon carbide (Pt/SiC) nanoballs," Sens. Actuators B, Chem., vol. 262, pp. 162-170, 2018.
[83] T. Travis, "Haber-bosch process: exemplar of 20th century chemical industry," vol., pp. 581-585, 1993.
[84] H.M. ApSimon, B.M. Barker, and S. Kayin, "Modelling studies of the atmospheric release and transport of ammonia in anticyclonic episodes," Atmos. Environ., vol. 28, pp. 665-678, 1994.
[85] S. Yamulki, R.M. Harrison, and K.W.T. Goulding, "Ammonia surface-exchange above an agricultural field in southeast england," Atmos. Environ., vol. 30, pp. 109-118, 1996.
[86] R. Pandeeswari, and B.G. Jeyaprakash, "High sensing response of β-Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature," Sens. Actuators B, Chem., vol. 195, pp. 206-214, 2014.
[87] C.C Chang, T.C Chou, W.C Chen, J.S. Niu, K.W. Lin, S.Y. Cheng, and W.C. Liu, "A highly sensitive ammonia (NH3) sensor based on a tungsten trioxide (WO3) thin film decorated with evaporated platinum (Pt) nanoparticles," IEEE Trans. Electron Devices, vol. 67, pp. 1176-1182, 2020.
[88] P. Van Tong, N.D. Hoa, N. Van Duy, D.T.T. Le, and N. Van Hieu, "Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles," Sens. Actuators B, Chem., vol. 223, pp. 453-460, 2016.
[89] S.K. Lee, D. Chang, and S.W. Kim, "Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection," J. Hazard. Mater., vol. 268, pp. 110-114, 2014.
[90] S.G. Pawar, M.A. Chougule, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, and V.B. Patil, "Room temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite," IEEE Sens. J., vol. 11, pp. 3417-3423, 2011.
[91] S.C. Naisbitt, K.F.E. Pratt, D.E. Williams, and I.P. Parkin, "A microstructural model of semiconducting gas sensor response: the effects of sintering temperature on the response of chromium titanate (CTO) to carbon monoxide," Sens. Actuators B, Chem., vol. 114, pp. 969-977, 2006.
[92] K.H. Kim, S.A. Jahan, and J.T. Lee, "Exposure to formaldehyde and its potential human health hazards," Journal of Environmental Science and Health, Part C, vol. 29, pp. 277-299, 2011.
[93] R. Dales, and M. Raizenne, "Residential exposure to volatile organic compounds and asthma," The Journal of asthma : official journal of the Association for the Care of Asthma, vol. 41, pp. 259-270, 2004.
[94] J.H.E. Arts, M.A.J. Rennen, and C. de Heer, "Inhaled formaldehyde: evaluation of sensory irritation in relation to carcinogenicity," Regul. Toxicol. Pharm., vol. 44, pp. 144-160, 2006.
[95] A. Casset, C. Marchand, A. Purohit, S. Le Calvé, B. Uring, C. Donnay, P. Meyer, and F. Blay, "Inhaled formaldehyde exposure: effect on bronchial response to mite allergen in sensitized asthma patients," Allergy, vol. 61, pp. 1344-1350, 2006.
[96] S. Li, Y. Liu, Y. Wu, W. Chen, Z. Qin, N. Gong, and D. Yu, "Highly sensitive formaldehyde resistive sensor based on a single er-doped SnO2 nanobelt," Physica B: Condensed Matter, vol. 489, pp. 33-38, 2016.
[97] X. Xing, Y. Li, D. Deng, N. Chen, X. Liu, X. Xiao, and Y. Wang, "Ag-functionalized macro-/mesoporous AZO synthesized by solution combustion for VOCs gas sensing application," RSC Advances, vol. 6, pp. 101304-101312, 2016.
[98] W. Wei, S. Guo, C. Chen, L. Sun, Y. Chen, W. Guo, and S. Ruan, "High sensitive and fast formaldehyde gas sensor based on Ag-doped LaFeO3 nanofibers," J. Alloys Compd., vol. 695, pp. 1122-1127, 2017.
[99] P. Das, B. Mondal, and K. Mukherjee, "Chemi-resistive response of rutile titania nano-particles towards isopropanol and formaldehyde: a correlation with the volatility and chemical reactivity of vapors," Materials Research Express, vol. 4, pp. 015503, 2017.
[100] G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang, and J. Xu, "Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone," Sens. Actuators B, Chem., vol. 283, pp. 590-601, 2019.
[101] N. Li, Y. Fan, Y. Shi, Q. Xiang, X. Wang, and J. Xu, "A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: synthesis, sensing performance and mechanism," Sens. Actuators B, Chem., vol. 294, pp. 106-115, 2019.
[102] J.E. Lee, D.Y. Kim, H.K. Lee, H.J. Park, A. Ma, S.Y. Choi, and D.S. Lee, "Sonochemical synthesis of hkust-1-based CuO decorated with Pt nanoparticles for formaldehyde gas-sensor applications," Sens. Actuators B, Chem., vol. 292, pp. 289-296, 2019.
[103] D. Liu, J. Pan, J. Tang, W. Liu, S. Bai, and R. Luo, "Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties," J. Phys. Chem. Solids, vol. 124, pp. 36-43, 2019.