| 研究生: |
王聖傑 Wang, Seng-Jay |
|---|---|
| 論文名稱: |
純銅霧化與銅基複合材料之製程及熱性質探討 The study on process of atomization copper powder and the thermal property of copper matrix composite |
| 指導教授: |
曹紀元
Tsao, Chi-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 熱傳導係數 、熱膨脹 、銅基複合材料 、粉末特性 、氣體霧化 |
| 外文關鍵詞: | powder characteristics, copper matrix, Gas atomization |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣體霧化銅粉於近年來已有許多研究,對於其粉末性質亦多所討論。本實驗以實驗室特有之專利『雙氣流霧化』方式並搭配田口式實驗法建立銅粉霧化設備與製程參數,目前已成功製得平均粒徑20μm之球狀銅粉。研究中探討霧化壓力6~8 bar對粉末粒徑與其特性之影響,發現霧化壓力及過熱度100K~200K之提高有助於製得較細且較圓之粉末。但當霧化壓力過大易產生不規則球狀粉末,而過熱度太高時則易造成粉末團聚凝結成衛星狀。
熱壓法製作搭配田口氏實驗設計,製作純銅之壓胚並分析出最 佳參數應用於銅/鑽石複合材料,以773 K、650 MPa、40分鐘之參數製作鑽石含量比 0.1~0.8 之試片,並進一步以熱傳熱膨脹模型探討熱傳導與熱擴散係數對於強化相含量之關係,以及探討熱膨脹係數與鑽石添加之體積比之間關係。結果發現熱傳導值由350W/m‧K降至150W/m‧K隨著鑽石含量之由10%增加80%,而熱膨脹係數則是有效地隨鑽石含量之添加由10×10-6/K減少至2×10-6/K。
Over the past few years a considerable number of studies have been made on the process gas atomization for copper powder.The properties of this research is to establish the equipment of gas atomization for copper powder and the parameter pf process with “Dual-jet atomization” of our unique patent accompanying with the experiment og Taguchi method. We have successfully made the 20um average size of spherical copper powder.To study the effect of atomization pressure from 6 to 8 bar on discovered powder size and characteristics, it is the high gas pressure leads to the irregular shape of powder and high degree of overheating comes to the satellite of morphology due to powder aggregation.
Furthermore, applying the method of hot-pressing to copper matrix composite, and Cu composites containing diamond volume fractions between 0.1 and 0.8 were fabricated by hot pressing the powder mixtures of diamond and Cu at 773 K with a pressure of 650 MPa under flowing reduction gas. In this study, it will be discussed the relation the amounts of reinforcement and thermal conductivity with several thermal conductivity models. Moreover, increasing the volume percentage of reinforcement causes the decrease of thermal conductivity from 350W/m‧K to 150W/m‧K. The thermal expansion property of composites was measured (10×10-6/K ~ 2×10-6/K) and compared with those predicted from various theoretical models.
1. M. E. Fayed and L. Otten. ”Handbook of Powder Science and
Technology”, Van Nostrand Reinhold Co., New York.
2. E.J. Lavernia and Y. Wu, Spray Atomiztion and Deposition, John Wiley
& Sons Ltd, 1996, pp. 49-153
3. E. Klar , Metal Handbook, “Nith Edition, Vol. 7. Powder Metallurgy,
ASM, 1984 pp.1~121
4. C. H. Murphy, ”Handbook of Particle Sampling and Analysis Methods”,
Verlag Chemie Intern. Inc.
5. M. E. Fayed and L. Otten. ”Handbook of Powder Science and
Technology”, Van Nostrand Reinhold Co., New York
6.Tamura, K. and Takeda, T., “Production of Copper Powder by
Atomization,” Trans. Nat. Res. Inst. Metals (Japan), 1963, vol.
5,pp.252-256.
7.German and Randall, M., Powder Metallurgy Science. Metal Powder
Industries Federation, Princeton, N.J., 1994.
8. 汪建民 主編, 粉末冶金技術手冊, 中華民國冶金協會, pp13~23
9. 王遐編著, 粉末製造與傳統粉末加工成形, 機械技術出版社, 第二
章, 民國81 年3 月
10. 陳克紹編譯, 粉末冶金概論, 全華科技圖書股份有限公司, 第二
章, 民國74 年.
11. Cubberly, and William, H. Metal Handbook. ninth ed., Vol. 7, Powder
46
Metallurgy, American Society for Metal, 1984.
12. Experimental Design for Improved Ceramic Prossing.Emphasizing
the Taguchi Method, American Ceramic Society Bull, No.12, vol.72,
pp.87-92, 1993.
13. Wei Guang Lan, Mimg Keong Wong, and Ni Chen“ Orthogonal
Array Design as a Chemometric Method for the Optimization of
Analytical Procedures. Party 1. Two-Level Design and Its Application in
Microwave Dissolution of Bilological Samples”, Analyst, vol.119,
pp.1659-1667, 1994.
14.李輝煌,田口方法(Taguchi Methods) 品質設計的原理與實務,高
立圖書有限公司,2000.
15. 田口玄一、吉澤正孝, 田口式品質工程講座(一)開發設計階段
的品質工程。中國生產力中心,1990.
16. 田口玄一、山本昌吳, 田口式品質工程講座 (二)製造階段的品質
工程 。中國生產力中心,1991.
17. 田口玄一、小西省三, 田口式品質工程講座(三)品質評價的S/N比
中國生產力中心,1991.
18. 田口玄一、橫山巽子, 田口式品質工程講座(四) 品質設計的實驗
計畫法中國生產力中心,1995.
19. MIT press, Michael B. Bever, “Encyclopedia of Materials Science
and Engineering",pp.2202-2209,1991.
20. ASM International, ASM Handbook 9thed-Powder Metal
Technologies and Applications vol.7,pp.508-515,1998.
21. ASM International, ASM Handbook 9thed-Powder Metal
47
Technologies and Applications vol.7,pp.947∼956,1998.
22. ASM International, Engineered Materials Handbook- Desk
Edition,pp.802-804,1995.
23. ASM International, Engineered Materials Handbook-Desk Edition ,
pp.1068-1070,1995.
24.張志忠, 黃振東, “先進熱管理材料之發展與應用”, 工業材料雜誌,
171 期, pp.149-457, 2001
25. ASM Handbook Vol.2, Am. Soc. for Metals, Metals Park, OH. (1991)
401.
26. P. S. Turner, J. Res. NBS, 37 (1946) 239.
27. E. H. Kerner, Proc. Phys. Soc. 69 (1956) 808.
28. Incropera, DeWitt, “Fundamentals of Heat and Mass Transfer 4/e”
29. Maxwell, J. C. A Treatise on Electricity and Magnetism, 1 3rd ed.,
Oxford University Press(1904).
30. Lord Rayleigh, “On the Influence of Obstacles Arranged in
Rectangular Order Upon the Properties of a Medium,” Phil. Mag.,
34:841(1982).
31. Hasselman DPH, Johnson LF. Effective thermal conductivity of
composites with interfacial thermal barrier resistance. J Compos Mater
1987;21:508–15.
2. D. J. Lloyd, “Particulate reinforcement composites produced bymolten
metal mixing” in “High Performance Composites for the1990’s” , Edited
by S. K. Das, C. P. Ballard and F. Marikar, TheMinerals, Metals &
Materials Society ,1991
48
32. E.J. Lavernia and Y. Wu, Spray Atomiztion and Deposition, John
Wiley & Sons Ltd, 1996, pp. 103-140
33. W. Gasior, Z. Moser, J. Pstrus and M. Kucharski, “Viscosity of the
lead tin liquid alloys”, Archives of Metallurgy. 46 (2001) 23-32
34.Hiroshi Hatta, Takako Takei, “Effects of dispersed microvoids on
thermal expansion behavior of composite materials”, Mater. Sci. Eng.
A285 (2000)
35.T. Hamano, Proc. 29th Fall Meeting Jpn. Soc. Chem, vol. 1, 1978, p.
542
36.R. M. German, “powder Metallurgy Science”, Metal powder
Industries Federation, Princeton, N.J. 2nded. (1994) 323.
37.Q. Sun, O. T. Inal, Mater Sci. Eng, B41 (1996) 261.
38. Katsuhito Yoshida , Hideaki Morigami, “Thermal properties of
diamond/copper composite material”, Microelectronics Reliability 44
(2004) 303–308
39. I. A. Ibrahim, F. A. Mohamed and E. J. Lavernia, “Particulate
reinforced metal matrix composites-A review” , J. Materials
Science,Vol.26,pp.1137-1156, 1991
40. D. J. Lloyd, “Particulate reinforcement composites produced
bymolten metal mixing” in “High Performance Composites for
the1990’s” , Edited by S. K. Das, C. P. Ballard and F. Marikar, The
Minerals, Metals & Materials Society ,1991
41. J. TIAN, K. SHOBU,” Hot-pressed AlN-Cu metal matrix composites
and their thermal properties”, JOURNAL OF MATERIALS SCIENCE
39 (2004) 1309 – 1313
49
42. P. YIH, D.D.L. CHUNG ,” Brass-matrix silicon carbide whisker
composites prepared by powder metallurgy”, Journal of Materials
Science 34 (1999) 359– 364
43 Yibin Xu, Yoshihisa Tanaka, Masahiro Goto, “Thermal conductivity of
SiC fine particles reinforced Al alloy matrix composite with dispersed
particle size”, Journal of Applied Physic