簡易檢索 / 詳目顯示

研究生: 蔡明峰
Tsai, Ming-Fong
論文名稱: 使用可適性多點跳躍方法以提升影像串流傳輸服務品質
An Adaptive Multi-hop Scheme to Enhance the QoS of Video Streaming Transmission
指導教授: 黃文祥
Hwang, Wen-Shyang
謝錫堃
Shieh, Ce-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 51
中文關鍵詞: 服務品質多點跳躍
外文關鍵詞: Forward Error Correction, Heterogeneous links, QoS, Multi-hop FEC
相關次數: 點閱:111下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統端點到端點之前向糾錯保護機制應用在異質性連接上,不僅會導致渴望的保護封包過分分配在每一條連接上,而且同時,導致了更嚴重的網路影響像是封包壅塞遺失以及封包延遲。此篇論文針對影像串流傳輸在異質性連接上,滿足通道速率之分配問題,以及提出一個可適性多點跳躍前向糾錯控制方法。為了提升傳統端點到端點之前向糾錯保護機制,我們提出可適性多點跳躍前向糾錯控制方法,是基於逐點跳躍之前向糾錯控制方法,同時可適性的控制前向糾錯機制保護封包之數量以及跳躍之次數。我們驗證所提出的可適性多點跳躍前向糾錯方法在真實網路環境上,以及呈現實驗結果。

    The conventional end-to-end forward error correction (FEC) protection mechanisms over heterogeneous links will not only over-allocate the desired redundancy for each link but also lead to the critical network effects such as congestion loss and delay. This paper addresses the channel rate allocation problem for video streaming over heterogeneous links, and an adaptive multi-hop FEC control scheme is proposed. In order to improve the conventional end-to-end FEC protection mechanism, our proposed adaptive multi-hop FEC control scheme is based on the hop-by-hop protection and adaptively controls the number of FEC redundant packets and hops. We evaluate our proposed adaptive multi-hop FEC control scheme in the realistic network environment and the experimental results are presented.

    Contents I Tables III Illustrations IV CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BACKGROUND 3 2.1 Overlay Networks 3 2.2 Error Control 5 2.2.1 Automatic Repeat Request 6 2.2.2 Forward Error Correction 7 2.3 Video Streaming Analysis 9 2.3.1 MPEG-1 12 2.3.2 MPEG-2 12 2.3.3 MPEG-4 13 CHAPTER 3 ADAPTIVE MULTI-HOP FEC 14 3.1 Framework of FEC-aware overlay network 14 3.2 Implementation of FEC-aware overlay nodes 16 3.3 FEC Performance 18 3.4 Decodable Frame Rate 19 3.5 Adaptive Multi-hop scheme 20 CHAPTER 4 EXPERIMENTAL RESULTS 24 4.1 Experiment Environment 24 4.1.1 Platform 25 4.1.2 Wireless Error Model 26 4.2 Scenario I 28 4.3 Scenario II 35 CHAPTER 5 CONCLUSIONS 38 Related Works 39 Overlay Multi-hop FEC 39 OverQoS 42 References 45

    [1] K. Park, W. Wang, QoS-sensitive transport of real-time MPEG video using adaptive redundancy control, Computer Communications, Volume 24, Number 1, 1 January 2001, pp. 78-92(15).

    [2] Dan Jurca and Pascal Frossard, Optimal FEC rate for media streaming in active network, IEEE International Conference on Multimedia Expo (ICME), Volume 2, 27-30 June 2004, pp. 1319-1322.

    [3] Yufeng Shan, Ivan V. Bajic, Shivkumar Kalyanaraman and John W. Woods, Overlay Multi-Hop FEC Scheme For Video Streaming Over Peer-to-Peer Networks, Elsevier Journal on Signal Processing: Image Communications, Special Issue on Video Networking, Volume 20/8, 2005, pp. 710-727.

    [4] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall, Gary J. Minden, A Survey of Active Network Research, IEEE Communications Magazine, Volume 35, Issue 1, Jan. 1997, pp. 80-86.

    [5] Larry L. Peterson, Bruce S. Davie, Computer Networks, Edition 3, Morgan Kaufmann, ISBN: 1-55860-833-8.

    [6] Qi Fang, Weijia Jia, Jie Wu, Available Bandwidth Detection with Improved Transport Control Algorithm for Heterogeneous Networks, IEEE International Conference on Distributed Computing Systems, 6-10 June 2005, pp. 656-659.

    [7] Syed A. Khayam, Shirish Karande, Hayder Radha, Dmitri Loguinov, Performance Analysis and Modeling of Errors and Losses over 802.11b LANs for High-bit-rate Real-time Multimedia, Signal Processing: Image Communication, Volume 18, Jul. 2003, pp. 575-595.

    [8] A. Ziviani, B. E. Wolfinger, J. F. Rezende, O. C. M. B. Duarte, and S. Fdida, On the Combined Adoption of QoS Schemes to Improve the Delivery Quality of MPEG Video Streams, International Symposium on Performance Evaluation of Computer and Telecommunication System, July 2002, pp. 25-32.

    [9] F. Fitzek, MPEG trace, http://trace.eas.asu.edu/.

    [10] http://www.linuxdig.com/

    [11] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, Delayed Internet routing convergence, ACM SIGCOMM, 2000, pp. 175-187.

    [12] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris, Resilient Overlay Networks, ACM SOSP, Volume 35, Issue 5, December 2001, pp. 131-145.

    [13] Stefan Savage, Andy Collins, Eric Hoffman, John Snell, and Thomas Anderson, The End-to-End Effects of Internet Path Selection, ACM SIGCOMM, August 1999, pp. 289-299.

    [14] David G. Andersen, Alex C. Snoeren, and Hari Balakrishnan, Best-Path vs. Multi-Path Overlay Routing, ACM SIGCOMM Internet Measurement Conference, October 2003.

    [15] Nick Feamster, David G. Andersen, Hari Balakrishnan, and M. Frans Kaashoek, Measuring the Effects of Internet Path Faults on Reactive Routing, ACM SIGMETRICS, June 2003.

    [16] Joe Touch, Dynamic Internet Overlay Deployment and Management Using the X-Bone, Computer Networks, Volume 36, Issue 2-3, July 2001, pp. 117-135.

    [17] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang, A Case for End System Multicast, ACM SIGMETRICS, 2000, pp. 1-12.

    [18] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy H. Katz, OverQoS: Offering Internet QoS Using Overlays, ACM SIGCOMM Computer Communications Review, Volume 33, Issue 1, 2003, pp. 11-16.

    [19] Zhi Li, and Prasant Mohapatra, QRON: QoS-Aware Routing in Overlay Networks, IEEE Journal on Selected Areas in Communications, Special Issue on Service Overlay networks, Volume 22, Issue 1, 2004, pp. 29-40.

    [20] Angelos D. Keromytis, Vishal Misra, and Dan Rubenstein, SOS: Secure Overlay Services, ACM SIGCOMM, August 2002, pp. 61-72.

    [21] John Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav Rost, Informed Content Delivery Across Adaptive Overlay Networks, ACM SIGCOMM, August 2002, pp. 47-60.

    [22] Zhi Li, and Prasant Mohapatra, The Impact of Topology on Overlay Routing Service, IEEE INFOCOM, Volume 1, 7-11 March 2004, pp. 408-418.

    [23] C. Perkins, O. Hodson, and V. Hardman, A Survey of Packet Loss Recovery Techniques for Streaming Audio, IEEE Network, Volume 12, No. 5, Sept./Oct. 1998, pp. 40-48.

    [24] Shu Lin, and Daniel J. Costello, Error Control Coding: Fundamentals and Applications, Englewood Cliffs, NJ: Prentice-Hall, 1983.

    [25] L. Rizzo, Effective Erasure Codes for Reliable Computer Communication Protocols, ACM SIGCOMM Computer Communication, Volume 27, No. 2, April 1997, pp. 24-36.

    [26] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J. Crowcroft, RFC 3542: Forward Error Correction (FEC) Building Block, Internet Engineer Task Force, 2002.

    [27] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J. Crowcroft, RFC 3453: The Use of Forward Error Correction (FEC) in Reliable Multicast, Internet Engineer Task Force, 2002.

    [28] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker, A Scalable Content-Addressable Network, ACM SIGCOMM, August 2001, pp. 27-31.

    [29] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan, Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, ACM SIGCOMM, August 2001, pp. 149-160.

    [30] Antony Rowstron, and Peter Druschel, Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems, ACM Distributed Systems Platforms, Nov. 2001, pp. 329-350.

    [31] Dahlia Malkhi, Moni Naor, and David Ratajczak, Viceroy: A Scalable and Dynamic Emulation of the Butterfly, ACM Principles of Distributed Computing, July 2002, pp. 183-192.

    [32] Hayder Radha, and Mingquan Wu, Overlay and Peer-to-Peer Multicast with Network-Embedded FEC, IEEE International Conference on Image Processing, Volume 3, 24-27 Oct. 2004, pp. 1747-1750.

    [33] J. Ebert, and A. Willig, A Gilbert-Elliot Bit Error Model and the Efficient Use in Packet Level Simulation, Technical Report, TKN-99-002, Technical University of Berlin, 1999.

    [34] Syed A. Khayam, Shirish Karande, Hayder Radha, and Dmitri Loguinov, Performance Analysis and Modeling of Errors and Losses over 802.11b LANs for High-bit-rate Real-time Multimedia, Signal Processing: Image Communication, Volume 18, Issue 7, August 2003, pp. 575-595.

    [35] S. Karande, S. A. Khayam, M. Krappel, and H. Radha, Analysis and Modeling of Errors at the 802.11b Link-Layer, IEEE International Conference on Multimedia and Expo, Volume 1, 6-9 July 2003, pp. 673-676.

    [36] S. A. Khayam, H. Radha, Markov-based Modeling of Wireless Local Area Networks, ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile System, 2003, pp. 100-107.

    [37] D. Le Gall, MPEG: A Video Compression Standard for Multimedia Applications, ACM Communications, April 1991, pp. 46-58.

    [38] S. Rampal, D. Reeves, Y. Viniotis, and D. Argrawal, Dynamic Resource Allocation Based on Measured QoS, Technical Report TR-96-02, North Carolina State University Department of Computer Science, 1995.

    [39] N. Ansari, Liu Hai, Y. Q. Shi, and Zhao Hong, On modeling MPEG video traffics, IEEE Transactions on Broadcasting, Volume 48, Issue 4, December 2002, pp. 337-347.

    [40] N. D. Doulamis, A. D. Doulamis, G. E. Konstantoulakis, and G. I. Stassinopoulos, Efficient modeling of VBR MPEG-1 coded video sources, IEEE Transactions on Circuits and Systems for Video Technology, Volume 10, Issue 1, Feb. 2000, pp. 93-112.

    [41] A. Lombardo, G. Morabito, S. Palazzo, and G. Schembra, A Markov-based Model of MPEG-2 audio/video traffic, Global Telecommunications Conference (GLOBECOM), Volume 2, 1999, pp. 1189-1193.

    [42] M. Conti, E. Gregori, and A. Larsson, Study of the impact of MPEG-1 correlations on video-sources statistical multiplexing, IEEE Journal on Selected Areas in Communications, Volume 14, Issue 7, September 1996, pp. 1455-1471.

    [43] Liang Qilian, and J. M. Mendel, MPEG VBR video traffic modeling and classification using fuzzy technique, IEEE Transactions on Fuzzy Systems, Volume 9, Issue 1, Feb. 2001, pp. 183-193.

    下載圖示 校內:2007-08-16公開
    校外:2007-08-16公開
    QR CODE