| 研究生: |
葉柏賢 Yeh, Po-Hsien |
|---|---|
| 論文名稱: |
新穎熱壓硫陰極中添加導離子/導電子材料於高能量密度鋰硫電池之應用 Ion/Electron-conductive Additives in Novel Hot-pressing Sulfur Cathodes for High-energy-density Batteries |
| 指導教授: |
鍾昇恆
Chung, Sheng-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 固態電解質 、導電碳 、鋰硫電池 、導離子性 、導電子性 |
| 外文關鍵詞: | solid-state electrolytes, conductive carbon black, lithium–sulfur cells, ionic conductivity, electronic conductivity |
| 相關次數: | 點閱:35 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了應對現今高漲的能源需求,不同儲能系統應運而生。鋰離子電池首先於上世紀90年代成功商業化,經過30餘年的發展,其實際放電比容量已與理論放電比容量值相差無幾。然而,由於材料本身的晶體結構限制,使得商用與開發中的鋰離子電池陰極實際放電比容量僅有約理論值的一半,因此當前人們迫切需要更高能量密度的電池來滿足需求。次世代鋰電池之一的鋰硫電池因其高理論能量密度(2600 W h kg-1)、高理論比電容量(1675 mA h g-1)、較為低廉的成本(每噸僅USD 130元)等優勢而備受矚目,但硫本身的低導離子/導電率(5×10-30 S cm-1)及電化學過程中不可避免地從反應區域流失的中間產物,皆使得實際情形中的鋰硫電池難以達到預期的理論儲電性能。為此,本實驗先將純硫分別與少量的固態氧化物電解質Li0.34La0.56TiO3 (LLTO)或導電碳黑均勻混合後,然後藉由熱壓技術將一定量的硫與導離子LLTO混合物或是硫與導電碳黑混合物複合於碳基材中,分別製成HPS+LLTO與HPS+C硫陰極電極,而先前添加的氧化物電解質LLTO與碳黑主要功能是用來降低硫元素本身的高電阻;此外,氧化物電解質的高導離子性可提升鋰離子的傳輸,透過建立更完整的離子通道,並且通過後續實驗證實能進一步改善鋰硫電池的長循環性能。鋰硫電池的另一項挑戰是起因於中間產物—多硫化物的生成,具高移動性的多硫化物容易擴散至陽極,造成陰極活性物質的流失,這一現象在沒有添加硝酸鋰的電解液尤為明顯,因此,藉由分析中發現LLTO可吸附多硫化物的特性,能減緩多硫化物的擴散現象,並觀察庫倫效率能否有所改善。
High-energy-density lithium–sulfur batteries have emerged as one of the promising solutions to deal with the energy crunch nowadays, thanks to their low cost and environmental friendliness. However, several scientific and engineering challenges, such as the low electrical/ionic conductivity of the active material, need to be overcome to enhance the overall battery performance.
In this research, we adopt a new fabrication method and incorporate ionic and electronic conductors, which are lithium lanthanum titanate (LLTO) and carbon black, respectively in the hot-pressed sulfur (HPS) cathodes as HPS+LLTO and HPS+C cathodes with a high sulfur loading of 6 mg cm-2. Material analyses not only confirm the uniform distribution of conductive additives in the cathode but also corroborate the polysulfide-trapping capability and conversion ability of ionically conductive LLTO. In the electrochemical analyses, the cells containing extra ionically and electronically conductive additives exhibit an initial discharge capacity over 800 mA h g-1 at a C/10 rate. Moreover, cells containing LLTO show greater improvement, with enhanced discharge capacities of 870–760 mA h g-1 at a C/10 rate for 100 cycles with low electrolyte-to-sulfur ratios of 7–5 µL mg-1, compared to those containing carbon black and reference under lean-electrolyte conditions. More importantly, the cells incorporating LLTO demonstrate good cycling performance even using the LiNO3-free electrolyte.
In summary, the research studies the electrochemical properties of the ionically and electronically conductive material in lithium–sulfur batteries. Due to the high ionic conductivity, polysulfide trapping capability, and the conversion ability of LLTO, the HPS+LLTO cells remain excellent cell performance and show superior cyclability and stability.
[1] Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability, Adv. Mater., 2021, 33, 2003666
[2] W. Zhang, Q. Yi, S. Li, C. Sun, An Ion-conductive Li7La3Zr2O12-based Composite Membrane for Dendrite-free Lithium Metal Batteries, J. Power Sources, 2020, 450, 227710
[3] Y. Li, Q. Wang, D. Zheng, W. Li, J. Wang, The Effect of Cerium Oxide Addition on the Electrochemical Properties of Lithium–Sulfur Batteries, J. Alloys Compd., 2019, 787 982–989
[4] Y.-C. Huang, H.-I. Hsiang, S.-H. Chung, Investigation and Design of High-Loading Sulfur Cathodes with a High-Performance Polysulfide Adsorbent for Electrochemically Stable Lithium–Sulfur Batteries, ACS Sustainable Chem. Eng., 2022, 10, 9254–9264
[5] S.-H. Chung, C.-H. Chang, A. Manthiram, Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable, Adv. Funct. Mater., 2018, 28, 1801188
[6] L. Chen, Y. Yuan, R. Orenstein, M. Yanilmaz, J. He, J. Liu, Y. Liu, X. Zhang, Carbon Materials Dedicate to Bendable Supports for Flexible Lithium–Sulfur Batteries, Energy Storage Mater., 2023, 60, 102817
[7] J. Li, X. Li, X. Fan, T. Tang, M. Li, Y. Zeng, H. Wang, J. Wen, J. Xiao, Holey Graphene Anchoring of the Monodispersed Nano-Sulfur with Covalently-grafted Polyaniline for Lithium Sulfur Batteries, Carbon, 2022, 188, 155–165
[8] C.-Y. Kung and S.-H. Chung, Electrolessly Tin-plated Sulfur Nanocomposite for Practical Lean-electrolyte Lithium–Sulfur Cells with a High-Loading Sulfur Cathode, Mater. Horiz., 2023, 10, 4857–4867
[9] S. Sharma, S. Basu, N. P. Shetti, K. Mondal, A. Sharma, T. M. Aminabhavi, Versatile Graphitized Carbon Nanofibers in Energy Applications, ACS Sustainable Chem. Eng., 2022, 10, 1334–1360
[10] Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li, Z. Qiao, J. Lin, Q. Wei, L. Wang, Q. Xie, D.-L. Peng, Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li–S Batteries, Adv. Sci., 2022, 9, 2106004
[11] J. Xia, W. Hua, L. Wang, Y. Sun, C. Geng, C. Zhang, W. Wang, Y. Wan, Q.-H. Yang, Boosting Catalytic Activity by Seeding Nanocatalysts onto Interlayers to Inhibit Polysulfide Shuttling in Li–S Batteries, Adv. Funct. Mater., 2021, 31, 2101980
[12] J. He, A. Bhargav, A. Manthiram, High-Energy-Density, Long-Life Lithium–Sulfur Batteries with Practically Necessary Parameters Enabled by Low-Cost Fe–Ni Nanoalloy Catalysts, ACS Nano, 2021, 15, 8583–8591
[13] J. Zheng, G. Ji, X. Fan, J. Chen, Q. Li, H. Wang, Y. Yang, K. C. DeMella, S. R. Raghavan, C. Wang, High-Fluorinated Electrolytes for Li–S Batteries, Adv. Energy Mater., 2019, 9, 1803774
[14] C. S. Santos, A. Botz, A.S. Bandarenka, E. Ventosa, W. Schuhmann, Li-Ion Batteries Correlative Electrochemical Microscopy for the Elucidation of the Local Ionic and Electronic Properties of the Solid Electrolyte Interphase in Li-Ion Batteries, Angew. Chem. Int. Ed., 2022, 61, e202202744
[15] U. S. Meda, L. Lal, S. M, P. Garg, Solid Electrolyte Interphase (SEI), a Boon or a Bane for Lithium Batteries: a Review on the Recent Advances, J. Energy Storage, 2022, 47, 103564
[16] P. Shi, T. Li, R. Zhang, X. Shen, X.-B. Cheng, R. Xu, J.-Q. Huang, X.-R. Chen, H. Liu, Q. Zhang, Lithiophilic LiC6 Layers on Carbon Hosts Enabling Stable Li Metal Anode in Working Batteries, Adv. Mater., 2019, 31, 1807131
[17] Y. Liu, X. Xu, M. Sadd, O. O. Kapitanova, V. A. Krivchenko, J. Ban, J. Wang, X. Jiao, Z. Song, J. Song, S. Xiong, A. Matic, Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal, Adv. Sci., 2021, 8, 2003301
[18] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review, Chem. Rev., 2017, 117, 10403
[19] M. Rosa Palacín, Understanding Ageing in Li-ion Batteries: a Chemical Issue, Chem. Soc. Rev., 2018, 47, 4924–4933
[20] J. H. Kim, M.-S. Kang, Y. J. Kim, J. Won, N.-G. Parkc, Y. S. Kang, Dye-Sensitized Nanocrystalline Solar Cells Based on Composite Polymer Electrolytes Containing Fumed Silica Nanoparticles, Chem. Commun., 2004, 14, 1662–1663
[21] J. Mindemark, M. J. Lacey, T. Bowden, D. Brandell, Beyond PEO—Alternative Host Materials for Li+-Conducting Solid Polymer Electrolytes, Prog. Polym. Sci., 2018, 81, 114
[22] Y. An, X. Han, Y. Liu, A. Azhar, J. Na, A. K. Nanjundan, S. Wang, J. Yu, Y. Yamauchi, Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond, Small, 2022, 18, 2103617
[23] Z.A. Laghari, I.R. Soomro, S.A. Jogi, U. Aftab, Polymerization and Curing Time Interactive Study of Gel-Polymer Electrolyte (GPE) for Electrical Applications, Int. J. Electr. Eng. Emerg. Technol., 2020, 3, 7–11
[24] K. S. Ngai, S. Ramesh, K. Ramesh, J. C. Juan, A Review of Polymer Electrolytes: Fundamental, Approaches and Applications, Ionics, 2016, 22, 1259–1279
[25] X. Liang, L. Wang, X. Wu, X. Feng, Q. Wu, Y. Sun, H. Xiang, J. Wang, Solid-State Electrolytes for Solid-State Lithium–Sulfur Batteries: Comparisons, Advances and Prospects, J. Energy Chem., 2022, 73, 370–386
[26] J. Lau, R. H. DeBlock, D. M. Butts, D. S. Ashby, C. S. Choi, B. S. Dunn, Sulfide Solid Electrolytes for Lithium Battery Applications, Adv. Energy Mater., 2018, 8, 1800933
[27] Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, H. Zhu, Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries, Adv. Mater. 2019, 31, 1901131
[28] J. Zhang, J. Lv, W. Lu, X. Li, Y. Liu, J. Lang, J. Liu, Z. Wang, M. Lu, H. Sun, Li10GeP2S12-Based Solid Electrolyte Induced by High Pressure for All-Solid-State Batteries: A Facile Strategy of Low-Grain-Boundary-Resistance, Chem. Eng. J., 2024, 487, 150452
[29] L. Xu, L. Zhang, Y. Hu, L. Luo, Structural Origin of Low Li-Ion Conductivity in Perovskite Solid-State Electrolyte, Nano Energy, 2022, 92, 106758
[30] C.-h. Chen, J. Du, Lithium-Ion Diffusion Mechanism in Lithium Lanthanum Titanate Electrolytes from Atomistic Simulations, J. Am. Ceram. Soc., 2015, 98, 534–542
[31] Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, High Ionic Conductivity in Lithium Lanthanum Titanate, Solid State Commun., 1993, 86, 689
[32] C. Ma, K. Chen, C. Liang, C.-W. Nan, R. Ishikawa, K. Morea, M. Chi, Atomic-Scale Origin of The Large Grain-Boundary Resistance in Perovskite Li-Ion-Conducting Solid Electrolytes, Energy Environ. Sci., 2014, 7, 1638
[33] J.-F. Wu, X. Guo, Origin of the Low Grain Boundary Conductivity in Lithium-Ion Conducting Perovskites: Li3xLa0.67-xTiO3, Phys. Chem. Chem. Phys., 2017, 19, 5880
[34] S. Peng, Y. Chen, X. Zhou, M. Tang, J. Wang, H. Wang, L. Guo, L. Huang, W. Yang, X Gao, Atomistic Origin of High Grain Boundary Resistance in Solid Electrolyte Lanthanum Lithium Titanate, J. Materiomics, DOI: 10.1016/j.jmat.2023.12.008
[35] T. Polczyk, W. Zając, M. Ziąbka, K. Świerczek, Mitigation of Grain Boundary Resistance in La2/3-xLi3xTiO3 Perovskite as an Electrolyte for Solid-State Li-Ion Batteries, J. Mater. Sci., 2021, 56, 2435–2450
[36] A. Sharafi, S. Yu, M. Nagui, M. Lee, C. Ma, H. M. Meyer, J. Nanda, M. Chi, D. J. Siegel, J. Sakamoto, Impact of Air Exposure and Surface Chemistry on Li–Li7La3Zr2O12 Interfacial Resistance, J. Mater. Chem. A, 2017, 5, 13475
[37] H. Huo, J. Luo, V. Thangadurai, X. Guo, C.-W. Nan, X. Sun, Li2CO3: A Critical Issue for Developing Solid Garnet Batteries, ACS Energy Lett., 2020, 5, 252–262
[38] S. Zhao, X. Zhu, W. Jiang, Z. Ji, M. Ling, L. Wang, C. Liang, Fundamental Air Stability in Solid-State Electrolytes: Principles and Solutions, Mater. Chem. Front., 2021, 5, 7452
[39] S. Kobayashi, D. Yokoe, Y. Fujiwara, K. Kawahara, Y. Ikuhara, A. Kuwabara, Lithium Lanthanum Titanate Single Crystals: Dependence of Lithium-Ion Conductivity on Crystal Domain Orientation, Nano Lett., 2022, 22, 5516–5522
[40] X. Liu, Z. Xiao, C. Lai, S. Zou, M. Zhang, K. Liu, Y. Yin, T. Liang, Z. Wu, Three-Dimensional Carbon Framework as High-Proportion Sulfur Host for High-Performance Lithium-Sulfur Batteries, J. Mater. Sci. Technol., 2020, 48, 84–91
[41] L. Wu, Y. Dai, W. Zeng, J. Huang, B. Liao, H. Pang, Effective Ion Pathways and 3D Conductive Carbon Networks in Bentonite Host Enable Stable and High-Rate Lithium–Sulfur Batteries, Nanotechnol. Rev., 2021, 10, 20–33
[42] S. Ahn, T. Noguchi, T. Momma, H. Nara, T. Yokoshima, N. Togasaki, T. Osaka, Facile Fabrication of Sulfur/Ketjenblack-PEDOT:PSS Composite as A Cathode with Improved Cycling Performance for Lithium–Sulfur Batteries, Chem. Phys. Lett., 2020, 749, 137426
[43] X. Qiao, C. Wang, J. Zang, B Guo, Y. Zheng, R. Zhang, J. Cui, X. Fang, Conductive Inks Composed of Multicomponent Carbon Nanomaterials and Hydrophilic Polymer Binders For High-Energy-Density Lithium–Sulfur Batteries, Energy Storage Mater., 2022, 49, 236–245
[44] S. Deng, T. Guo, J. Heier, C. Zhang, Unraveling Polysulfide’s Adsorption and Electrocatalytic Conversion on Metal Oxides for Li–S Batteries, Adv. Sci., 2023, 10, 2204930
[45] J. Wu, Q. Feng, Y. Wang, J. Wang, X. Zhao, L. Zhan, M. Liu, Z. Jin, Z. Chen, Y. Lei, Enhanced Lithium Polysulfide Adsorption on an Iron-Oxide-Modified Separator for Li–S Batteries, Chem. Commun., 2023, 59, 2966
[46] M. Li, S. Ji, X. Ma, H. Wang, X. Wang, V. Linkov, R. Wang, Synergistic Effect between Monodisperse Fe3O4 Nanoparticles and Nitrogen-Doped Carbon Nanosheets to Promote Polysulfide Conversion in Lithium–Sulfur Batteries, ACS Appl. Mater. Interfaces, 2022, 14, 16310–16319
[47] Z. Gao, Z. Xue, Y. Miao, B. Chena, J. Xu, H. Shi, T. Tang, X. Zhao, TiO2@Porous Carbon Nanotubes Modified Separator as Polysulfide Barrier for Lithium–Sulfur Batteries, J. Alloys Compd., 2022, 906, 164249
[48] L. Zhou, H. Li, X. Wu, Y. Zhang, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Double-Shelled Co3O4/C Nanocages Enabling Polysulfides Adsorption for High-Performance Lithium−Sulfur Batteries, ACS Appl. Energy Mater., 2019, 2, 11, 8153–8162
[49] X. Lang, T. Wang, Z. Wang, L. Li, C. Yao, K. Cai, Reasonable Design of a V2O5-x /TiO2 Active Interface Structure with High Polysulfide Adsorption Energy for Advanced Lithium–Sulfur Batteries, Electrochim. Acta, 2022, 403, 139723
[50] M. Zhang, Z. Zhang, F. Li, H. Mao, W. Liu, D. Ruan, X. Jia, Y. Yang, X. Yu, Reduced Porous Carbon/N-Doped Graphene Nanocomposites for Accelerated Conversion and Effective Immobilization of Lithium Polysulfides in Lithium–Sulfur Batteries, Electrochim. Acta, 2021, 397, 139268
[51] X. Luo, X. Lu, X. Chen, Y. Chen, C. Yu, D. Su, G. Wang, L. Cui, A Functional Hyperbranched Binder Enabling Ultra-Stable Sulfur Cathode for High-Performance Lithium–Sulfur Battery, J. Energy Chem., 2020, 50, 63–72
[52] Z. Shi, Y. Ding, Q. Zhang, J. Sun, Electrocatalyst Modulation toward Bidirectional Sulfur Redox in Li–S Batteries: From Strategic Probing to Mechanistic Understanding, Adv. Energy Mater., 2022, 12, 2201056
[53] S. Zhang, X. Ao, J. Huang, B. Wei, Y. Zhai, D. Zhai, W. Deng, C. Su, D. Wang, Y. Li, Isolated Single-Atom Ni-N5 Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium–Sulfur Batteries, Nano Lett., 2021, 21, 9691–9698
[54] H.-J. Li, K. Xi, W. Wang, S. Liu, G.-R. Li, X.-P. Gao, Quantitatively Regulating Defects of 2D Tungsten Selenide to Enhance Catalytic Ability for Polysulfide Conversion in a Lithium–Sulfur Battery, Energy Storage Mater., 2022, 45, 1229–1237
[55] B. Yu, A. Huang, D. Chen, K. Srinivas, X. Zhang, X. Wang, B. Wang, F. Ma, C. Liu, W. Zhang, J. He, Z. Wang, Y. Chen, In Situ Construction of Mo2C Quantum Dots-Decorated CNT Networks as a Multifunctional Electrocatalyst for Advanced Lithium–Sulfur Batteries, Small, 2021, 17, 2100460
[56] A. Rosenman, R Elazari, G. Salitra, E. Markevich, D. Aurbach, A. Garsuch, The Effect of Interactions and Reduction Products of LiNO3, the Anti-Shuttle Agent, in Li–S Battery Systems, J. Electrochem. Soc., 2015, 162, 3, A470–A473
[57] S. S. Zhang, Role of LiNO3 in Rechargeable Lithium–Sulfur Battery, Electrochim. Acta, 2012, 70, 344–348
[58] B. Z. Yang, P. Xie, Q. Luo, Z. W. Li, C. Y. Zhou, Y. H. Yin, X. B. Liu, Y. S. Li, Z. P. Wu, Binder-Free ω-Li3V2O5 Catalytic Network with Multi-Polarization Centers Assists Lithium–Sulfur Batteries for Enhanced Kinetics Behavior, Adv. Funct. Mater., 2022, 32, 2110665
[59] W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, W.-S. Yoon, Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries, J. Electrochem. Sci. Technol., 2020, 11, 1, 1–13
[60] D. Capkova, V. Knap, A. S. Fedorkova, D.-I. Stroe, Analysis of 3.4 Ah Lithium–Sulfur Pouch Cells by Electrochemical Impedance Spectroscopy, J. Energy Chem., 2022, 72, 318–325
[61] S. Waluś, C. Barchasz, R. Bouchet, F. Alloin, Electrochemical Impedance Spectroscopy Study of Lithium–Sulfur Batteries: Useful Technique to Reveal the Li–S Electrochemical Mechanism, Electrochim. Acta, 2020, 359, 136944
[62] R. Li, W. Xiao, C. Miao, R. Fang, Z. Wang, M. Zhang, Sphere-like SnO2/TiO2 Composites as High-Performance Anodes for Lithium-Ion Batteries, Ceram. Int., 2019, 45, 13530–13535
[63] B. Kurc, M. Pigłowska, An Influence of Temperature on the Lithium Ions Behavior for Starch-Based Carbon Compared to Graphene Anode for LIBs by the Electrochemical Impedance Spectroscopy (EIS), J. Power Sources, 2021, 485, 229323
[64] W. Weppner, R.A. Huggins, Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li3Sb, J. Electrochem. Soc., 1977, 124, 10, 1569–1578
[65] Y. X. Ren, T. S. Zhao, M. Liu, P. Tan, Y. K. Zeng, Modeling of Lithium–Sulfur Batteries Incorporating the Effect of Li2S Precipitation, J. Power Sources, 2016, 336, 115–125
[66] X. Yu, H. Pan, Y. Zhou, P. Northrup, J. Xiao, S. Bak, M. Liu, K.-W. Nam, D. Qu, J. Liu, T. Wu, X.-Q. Yang, Direct Observation of the Redistribution of Sulfur and Polysufides in Li–S Batteries during First Cycle by in Situ X-Ray Fluorescence Microscopy, Adv. Energy Mater., 2015, 5, 1500072
[67] J. Kim, S. Park, S. Hwang, W.-S. Yoon, Principles and Applications of Galvanostatic Intermittent Titration Technique for Lithium-ion Batteries, J. Electrochem. Sci. Technol., 2022, 13, 19–31
[68] A.G. Pandolfo, A.F. Hollenkamp, Carbon Properties and Their Role in Supercapacitors, J. Power Sources, 2006, 157, 11–27
[69] G. Feng, X. Liu, Y. Liu, Z. Wu, Y. Chen, X. Guo, B. Zhong, W. Xiang, J. Li, Trapping Polysulfides by Chemical Adsorption Barrier of LixLayTiO3 for Enhanced Performance in Lithium–Sulfur Batteries, Electrochim. Acta, 2018, 283, 894–903
[70] F. Xie, C. Xu, Y. Liang, Z. Tian, C. Ma, S. Xu, Z. Li, Z. U. Rehman, S. Yao, Cubic FeS2 Enabling Robust Polysulfide Adsorption and Catalysis in Lithium–Sulfur Batteries, J. Energy Storage, 2023, 72, 108712
[71] M.-Y. Wang, S.-H. Han, C.-Q. Niu, Z.-S. Chao, W.-B. Luo, H.-G. Jin, W.-J. Yi, Z.-Q. Fan, J.-C. Fan, Perovskite Lithium Lanthanum Titanate-Modified Separator as Both Adsorbent and Converter of Soluble Polysulfides toward High-Performance Li–S Battery, ACS Sustain. Chem. Eng., 2020, 8, 16477–16492
[72] M. Chen, C. Huang, Y. Li, S. Jiang, P. Zeng, G. Chen, H. Shu, H. Liu, Z. Lia, X. Wang, Perovskite-type La0.56Li0.33TiO3 as an Effective Polysulfide Promoter for Stable Lithium–Sulfur Batteries in Lean Electrolyte Conditions, J. Mater. Chem. A, 2019, 7, 10293
[73] Q. Zou, Y.-C. Lu, Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV–vis Spectroscopic Study, J. Phys. Chem. Lett., 2016, 7, 1518–1525
[74] L. Zhang, T. Qian, X. Zhu, Z. Hu, M. Wang, L. Zhang, T. Jiang, J.-H. Tian, C. Yan, In Situ Optical Spectroscopy Characterization for Optimal Design of Lithium–Sulfur Batteries, Chem. Soc. Rev., 2019, 48, 5432–5453
[75] C. Nims, B. Cron, M. Wetherington, J. Macalady, J. Cosmidis, Low Frequency Raman Spectroscopy for Micron-Scale and in Vivo Characterization of Elemental Sulfur in Microbial Samples, Sci. Rep., 2019, 9, 7971
[76] S. Li, W. Zhang, J. Zheng, M. Lv, H. Song, L. Du, Inhibition of Polysulfide Shuttles in Li–S Batteries: Modified Separators and Solid-State Electrolytes, Adv. Energy Mater., 2021, 11, 2000779
[77] J. Tan, J. Matz, P. Dong, M. Ye, J. Shen, Appreciating the Role of Polysulfides in Lithium–Sulfur Batteries and Regulation Strategies by Electrolytes Engineering, Energy Storage Mater., 2021, 42, 645–678
[78] S. Lv, X. Ma, S. Ke, Y. Wang, T. Ma, S. Yuan, Z. Jin, J.-L. Zuo, Metal-Coordinated Covalent Organic Frameworks as Advanced Bifunctional Hosts for Both Sulfur Cathodes and Lithium Anodes in Lithium–Sulfur Batteries, J. Am. Chem. Soc., 2024, 146, 9385–9394
[79] J.-J. Yuan, Z. Huang, Y.-Z. Song, M.-Y. Li, L.-F. Fang, B.-K. Zhu, H.-Y. Li, In-situ Crosslinked Binder for High-Stability S Cathodes with Greatly Enhanced Conduction and Polysulfides Anchoring, J. Chem. Eng., 2021, 426, 128705
[80] F. Y. Fan, Y.-M. Chiang, Electrodeposition Kinetics in Li–S Batteries: Effects of Low Electrolyte/Sulfur Ratios and Deposition Surface Composition, J. Electrochem. Soc., 2017, 164, A917–A922
[81] H. Peng, Y. Zhang, Y. Chen, J. Zhang, H. Jiang, X. Chen, Z. Zhang, Y. Zeng, B. Sa, Q. Wei, J. Lin, H. Guo, Reducing Polarization of Lithium–Sulfur Batteries via ZnS/Reduced Graphene Oxide Accelerated Lithium Polysulfide Conversion, Mater. Today Energy, 2020, 18, 100519
[82] L. Ma, C. Zhang, Y. Zhang, S. Zhang, B. Xu, M. Yan, Y. Chen, L. Chen, L. Wang, L. Zhou, W. Wei, Synergistic Polarization Engineering on BaTiO3 Bulk and Surface for Boosting Redox Kinetics of Polysulfides in Lithium–Sulfur Batteries, Acta Mater., 2024, 264, 119543
[83] P. T. Dirlam, J. Park, A. G. Simmonds, K. Domanik, C. B. Arrington, J. L. Schaefer, V. P. Oleshko, T. S. Kleine, K. Char, R. S. Glass, C. L. Soles, C. Kim, N. Pinna, Y.-E. Sung, J. Pyun, Elemental Sulfur and Molybdenum Disulfide Composites for Li–S Batteries with Long Cycle Life and High-Rate Capability, ACS Appl. Mater. Interfaces, 2016, 8, 13437–13448
[84] N. Ding, J. Schnell, X. Li, X. Yin, Z. Liu, Y. Zong, Electrochemical Impedance Spectroscopy Study of Sulfur Reduction Pathways Using a Flexible, Free-Standing and High-Sulfur-Loading Film, Chem. Eng. J., 2021, 412, 128559
[85] V.S. Kolosnitsyn, E.V. Kuzmina, S.E. Mochalov, Determination of Lithium Sulphur Batteries Internal Resistance by the Pulsed Method during Galvanostatic Cycling, J. Power Sources, 2014, 252, 28–34
[86] L. Kong, X. Chen, B.-Q. Li, H.-J. Peng, J.-Q. Huang, J. Xie, Q. Zhang, A Bifunctional Perovskite Promoter for Polysulfide Regulation toward Stable Lithium–Sulfur Batteries, Adv. Mater., 2018, 30, 1705219
[87] Y. Kong, L. Wang, M. Mamoor, B. Wang, G. Qu, Z. Jing, Y. Pang, F. Wang, X. Yang, D. Wang, L. Xu, Co/Mon Invigorated Bilateral Kinetics Modulation for Advanced Lithium–Sulfur Batteries, Adv. Mater., 2024, 36, 2310143
[88] L. Li, J. S. Nam, M. Kim, Y. Wang, S. Jiang, H. Hou, I.-D. Kim, Sulfur–Carbon Electrode with PEO-LiFSI-PVDF Composite Coating for High-Rate and Long-Life Lithium–Sulfur Batteries, Adv. Energy Mater., 2023, 13, 2302139
[89] Z. Chen, M. Lu, Y. Qian, Y. Yang, J. Liu, Z. Lin, D. Yang, J. Lu, X. Qiu, Ultra-Low Dosage Lignin Binder for Practical Lithium–Sulfur Batteries, Adv. Energy Mater., 2023, 13, 2300092
[90] Z. Zhu, Y. Zeng, Z. Pei, D. Luan, X. Wang, X. W. Lou, Bimetal-Organic Framework Nanoboxes Enable Accelerated Redox Kinetics and Polysulfide Trapping for Lithium–Sulfur Batteries, Angew. Chem., 2023, 135, e202305828
[91] X. Ren, Q. Wang, Y. Pu, Q. Sun, W. Sun, L. Lu, Synergizing Spatial Confinement and Dual-Metal Catalysis to Boost Sulfur Kinetics in Lithium–Sulfur Batteries, Adv. Mater., 2023, 35, 2304120
[92] X. Wang, B. Zhu, D. Xu, Z. Gao, Y. Yao, T. Liu, J. Yu, L. Zhang, Synergistic Effects of Co3Se4 and Ti2C3Tx for Performance Enhancement on Lithium–Sulfur Batteries, ACS Appl. Mater. Interfaces, 2023, 15, 26882–26892
[93] Q. Liu, Y. Wu, D. Li, Y.-Q. Peng, X. Liu, B.-Q. Li, J.-Q. Huang, H.-J. Peng, Dilute Alloying to Implant Activation Centers in Nitride Electrocatalysts for Lithium–Sulfur Batteries, Adv. Mater., 2023, 35, 2209233
[94] C. Li, W. Ge, S. Qi, L. Zhu, R. Huang, M. Zhao, Y. Qian, L. Xu, Manipulating Electrocatalytic Polysulfide Redox Kinetics by 1D Core–Shell Like Composite for Lithium–Sulfur Batteries, Adv. Energy Mater., 2022, 12, 2103915
[95] P.-H. Yeh and S.-H. Chung, Incorporation of Electronically and Ionically Conductive Additives in High-Loading Sulfur Cathodes in Lean-Electrolyte Lithium–Sulfur Cells, Electrochim. Acta, 2024, 502, 144794
校內:2029-08-13公開