簡易檢索 / 詳目顯示

研究生: 王子軒
Wang, Tz-Shiuan
論文名稱: 奈米石墨帶在空間調製電場下的磁電子性質
Magneto-electronic properties of graphene nanoribbons in the spatially modulated electric field
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 48
中文關鍵詞: 磁電子性質石墨帶
外文關鍵詞: graphene nanoribbon, magneto-electronic properties
相關次數: 點閱:70下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單層奈米石墨帶在空間調製電場下的磁電子性質將以
    Peierls緊束模型來研究,在此只考慮最鄰近碳原子交互作
    用。一垂直均勻磁場會造成所有能帶皆變成quasi-Landau
    levels的形式。然而,空間調製電場將更進一步引起許多振
    盪的拋物線能帶且伴隨新的band-edge states產生。調製電
    場會激烈地更改能帶色散關係,影響能帶的間距,破壞能帶
    結構對kx=0 和費米能的對稱性,改變band-edge states的特
    徵。上述的這些磁電子性質將會直接地反應在態密度上。峰
    的形式、數量、位置和強度會受調製的影響而改變。這些預
    測的態密度結果可以藉由光學實驗量測而得。

    The Peierls tight-binding model with the nearest-neighbor interactions is used to calculate the magneto-electronic structure of graphene nanoribbons under a spatially modulated electric fileld along the y-axis. A uniform
    perpendicular magnetic field could make all energy dispersions change into the quasi-Landau levels. Such levels are composed of the dispersionless and parabolic energy bands. A spatially modulated electric field would
    further induce a lot of oscillating parabolic bands with several band-edge states. It drastically modifies energy dispersions, alters subband spacings, destroys symmetry of energy spectrum about kx = 0 and Fermi level, and changes features of band-edge states (number and energy). The above-mentioned magneto-electronic structures are directly reflected in density of states (DOS). The modulation effect changes shape, number, positions, and intensities of peaks in DOS. The predicted result could be tested by the optical measurements.

    Abstract ............................................. 02 Chapter 1. Introduction .............................. 03 Chapter 2. Theory 2.1 Geometric structures ........................... 05 2.2 Tight-binding model ............................ 05 2.3 External fields ................................ 07 2.4 Density of states .............................. 09 Chapter 3. Result .................................... 10 Chapter 4. Conclusions ............................... 18 References ........................................... 19 Figure ............................................... 22 Appendix: programs ................................... 31

    [1] J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys.
    Rev. B. 43, 4579 (1991).
    [2] J. C. Charlier, X. Gonze, and J. P. Michenaud, Carbon
    32, 289 (1994).
    [3] Y. H. Wu, B. J. Yang, B. Y. Zong, H. Sun, Z. X. Shen,
    and Y. P. Feng, J. Mater. Chem. 14, 469 (2004).
    [4] J. S. Bunch, Y.Yaish, M. Brink, K. Bolotin, and P. L.
    McEuen, Nano Lett. 5, 287 (2005).
    [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
    Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A.
    Firsov, Science 306, 666(2004).
    [6] Y. B. Zhang, J. P. Small, M. E. S. Amori, and P. Kim,
    Phys. Rev. Lett. 94, 176803 (2005).
    [7] S. Iijima, Nature 354, 56 (1991).
    [8] C. G. Rocha, M. Pacheco, Z. Barticevic, and A. Latge,
    Phys. Rev. B 70, 233402 (2004).
    [9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
    M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos,
    and A. A. Firsov, Nature (London) 438, 197 (2005).
    [10] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov,
    H. L. Stormer, U. Zeitler, J. C. Maan, G. S.
    Boebinger, P. Kim, and A. K. Geim, Science 315, 1379
    (2007).
    [11] V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and I.
    A. Shovkovy, Phys. Rev. B 74, 195429 (2006).
    [12] J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M.
    R. Peres, Phys. Rev. Lett. 97, 266801 (2006).
    [13] N. M. R. Peres, F. Guinea, and A. H. Castro Neto,
    Phys. Rev. B 73, 125411 (2006).
    [14] H. Hiura, Appl. Surf. Sci. 222, 374 (2004).
    [15] K. Nakada, M Fujita, G. Dresselhaus, and M.S.
    Dresselhaus, Phys. Rev. B 54, 17954 (1996).
    [16] M. Fujita, K. Wakabayashi, K. Nakada, and K.
    Kusakabe, J. Phys. Soc. Jpn 65, 1920 (1996).
    [17] Y. Miyamoto, K. Nakada, and M. Fujita, Phys. Rev. B
    59, 9858 (1999).
    [18] K. Wakabayashi, M. Sigrist, and M. Fujita, J. Phys.
    Soc. Jpn. 67, 2089 (1998).
    [19] M. Ezawa, Phys. Rev. B 73, 45432 (2006).
    [20] Y.C. Huang, C.P. Chang, and M.F. Lin, Nanotechnology
    18, 495401 (2007).
    [21] Y.C. Huang, M.F. Lin, and C.P. Chang, J. Appl. Phys.
    103, 073709 (2008)

    下載圖示 校內:2011-07-18公開
    校外:2011-07-18公開
    QR CODE