簡易檢索 / 詳目顯示

研究生: 楊仲翔
Yang, Chung-Hsiang
論文名稱: 磷酸酶PP2A對激酶Akt的抗細胞凋亡功能 的調節作用
Regulation of the anti-apoptosis function of Akt by protein phosphatase 2A
指導教授: 蔣輯武
Chiang, Chi-Wu
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 63
中文關鍵詞: 磷酸酶激酶抗細胞凋亡
外文關鍵詞: Akt, anti-apoptosis function, protein phosphatase 2A
相關次數: 點閱:119下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   磷酸肌醇激酶(PI-3 K)/Akt激酶訊息傳遞路徑在細胞中扮演著十分重要的角色,許多細胞的生理作用包含葡萄糖代謝、細胞增生、血管新生、轉錄作用、以及細胞凋亡都與其訊息傳遞路徑息息相關。Akt激酶又稱之為蛋白質基酶B型(Protein kinase B/PKB),以下簡稱Akt,為一個蘇氨酸以及絲氨酸的激酶,主要是作用在磷酸肌醇激酶(PI-3 K)的下游。過去的研究指出,Akt的過度活化與許多人類的癌症有相關性。Akt能夠在生長因子的刺激之下而活化,而且Akt的活化與本身磷酸化的狀態有關,已知Akt可藉由兩個位點:第308蘇氨酸以及第473絲氨酸的磷酸化來達到其活化。近年來有相當多的證據顯示,在不同的細胞中磷酸酶PP2A具有去磷酸化Akt來達到負調節Akt活性的能力。磷酸酶PP2A,以下簡稱PP2A,為異型三次單元體所組成的三元複合體的磷酸酶。主要是由次單元體A、次單元體B以及次單元體C所組成的。次單元體A的功能為骨架蛋白,次單元體C則是具有著催化反應能力的蛋白,而為數眾多的次單元體B則是被認為扮演著決定PP2A的受質專一性以及PP2A在細胞內分佈位置的調節蛋白的角色。雖然,研究顯示PP2A能夠負調節Akt的活性,但是對於PP2A是否可以藉由負調節Akt而影響到Akt所調節細胞存活訊息傳遞路徑,目前仍是尚未明朗。因此,我們的研究目標即是要了解PP2A是否能夠調節Akt的抗細胞凋亡功能,而我們主要是以倚靠IL-3而存活的類淋巴細胞的FL5.12細胞作為我們研究的模型。我們的研究結果發現,在移除IL-3後Akt產生去磷酸化的現象也同時伴隨著FL5.12細胞的死亡。這樣的去磷酸化現象則可藉由PP2A的選擇性抑制劑,okadaic acid,而抑制住,這意味著在FL5.12細胞中PP2A具有調節Akt的功能。我們的研究更進一步的利用免疫沉澱法來確定在細胞中PP2A與Akt之間的交互作用,我們發現在NIH 3T3、COS-7以及FL5.12細胞中PP2A與Akt是存在同一個免疫沉澱下來的複合體內。接著,我們也發現Akt是存在於含有B55α的PP2A複合體裡面。我們也利用Microcystin pull-down的方法,將PP2A的三元複合體從FL5.12細胞中沉澱下來,同樣地也觀察到Akt存在於PP2A的三元複合體內。綜合來說,我們的研究結果顯示PP2A可能是藉由其次單元體B55α來調節Akt的活性。

     The phosphatidylinositide 3’-OH kinase (PI3K)/Akt signaling pathway plays a major role in regulation of multiple cellular processes such as glucose metabolism, cell proliferation, angiogenesis, transcription, and apoptosis. Akt, also termed protein kinase B, is a serine/threonine kinase that acts downstream of PI3K. Elevated Akt activity has been linked to several human cancers. Phosphorylation of Akt at two regulatory residues, Thr308 and Ser473, is required for its full activation in response to stimulation by survival factors and mitogens in a PI3K-dependent manner. A significant amount of evidence shows that Akt activity is negatively regulated by protein phosphates 2A in various cell types. PP2A is a heterotrimeric enzyme which consists of a scaffold subunit A, a catalytic subunit C, and a variable regulatory subunit B. However, the regulatory role of PP2A in Akt-mediated survival pathway is unclear. The aim of this project is to characterize the role of PP2A in regulating the anti-apoptosis activity of Akt in IL-3 dependent FL5.12 lymphoid cells. Our finding demonstrates that IL-3 withdrawal, a death stimulus to FL5.12 cells, triggers Akt dephosphorylation. Okadaic acid, a selective inhibitor of PP2A, prevented Akt dephosphorylation during IL-3 withdrawal, suggesting a role of PP2A in regulating Akt in FL5.12 cells. To further characterize the role of PP2A in regulating Akt, we investigated whether physical interaction of PP2A and Akt exists, we found that PP2A and Akt were co-immunoprecipitated in COS-7, NIH 3T3 cells. Moreover, Akt is present in the same complex with trimeric PP2A holoenzyme pulled down by microcystin sepharose in FL5.12 cells. Microcystin is known to pull down PP2A holoenzyme complex through the binding to C subunit of PP2A. Furthermore, Akt is found in association with the B55α-containing PP2A trimeric holoenzyme comlex in FL5.12 cells by co-immunoprecipitation. Taken together, our data demonstrate that PP2A may regulate Akt activity through the regulatory subunit B55α.

    誌謝 ……………………………………………………………………II 中文摘要 ………………………………………………………………III 英文摘要 ……………………………………………………………… V 圖目錄……………………………………………………………………1 表目錄 …………………………………………………………………2 A. 緒論 ………………………………………………………………… 3 一.Akt/Protein kinase B (蛋白質激酶B型) …………………………3 二. Akt的種類與結構 ………………………………………………4 三. Akt的表現 ………………………………………………………4 四. Akt的活化…………………………………………………………5 五. Akt的去活化 ……………………………………………………7 Akt在代謝中扮演的角色 ………………………………………………8 一.葡萄醣運送……………………………………………………….8 二.肝醣合成……………………………………………………….…8 三. 葡萄醣分解 …………………………………………………….8 四. 蛋白質合成 …………………………………………………….8 Akt的抗細胞凋亡作用…………………………………………….……9 蛋白質磷酸酶2A型(Protein phosphatase 2A/ PP2A) ……………10 一、PP2A 結構以及次單元體………………………………………10 二、後轉譯修飾作用對C次單元體的影響 ………………………11 三、PP2A為Akt的磷酸酶 …………………………………………12 B.研究方向 ……………………………………………………………13 C.試劑 ……………………………………………………………….... 14 D.材料與方法 …………………………………………………………15 一.設計真核細胞表現載體以表現Akt …………………………….15 二.利用聚合酶鏈鎖反應(Polymerase Chain Reaction)製造帶有合適限制酶及3’ tag的產物…………………………………………15 三.膠體萃取(Gel extraction)…………………………………………16 四.利用TA cloning方法建構帶有PCR產物的pGEM-T-easy 載體………………………………………………………………16 五.限制酶切割反應………………………………………………… 17 六.大腸桿菌轉形實驗(E.Coli transformation) ……………………17 七.蛋白質濃度的定量……………………………………………….18 八.西方點墨法(Western Blotting) ………………………………… .19 九.細菌培養所使用之培養基……………………………………….22 十.小量質體DNA製備(mini prep)…………………………………22 十一.細胞生長培養基……………………………………………….23 十二.細胞繼代培養(subculture)……………………………………..24 十三.細胞數目測定………………………………………………… 24 十四.冷凍細胞…………………………………………………….... 25 十五.Trypan blue exclusion…………………………………………. 25 十六.磷酸酶抑制劑對Akt磷酸化影響分析……………………… .25 十七.轉染(Transfection) …………………………………………… 26 十八.反轉錄病毒感染 (Retroviral infection) ………………………27 十九.免疫沉澱法(immunoprecipitation)……………………………28 二十. Microcystin pull down………………………………………. 30 E.實驗結果 ……………………………………………………………. 31 一、設計載體……………………………………………………… 31 二、PP2A磷酸酶選擇性抑制劑可防止Akt的去磷酸酸化反應… 31 三、IL3 withdrawal對FL5.12細胞的影響…………………………32 四、免疫沉澱法證明Akt與PP2A在NIH 3T3以及COS-7中形成穩定複合物 ……………………………………………………33 五、Microcystin pull-down證明在FL5.12細胞中Akt與PP2A形成複合物 …………………………………………………………34 六、PP2A的次單元體B55存在與Akt結合的複合物中……….. 35 F.實驗討論 ……………………………………………………………36 G.參考文獻 …………………………………………………………… 40 H.表…………………………………………………………………..….56 I圖 …………………………………………………………………..…49 J附錄 …………………………………………………………………. 57 附圖一、Akt不同的isoform………………………………………..57 附圖二、Akt的活化過程 ………..…………………………………58 附圖三、PP2A的次單元 ……………………………………………59 附圖四、pMSCV map …………………………………………………60 附圖五、pcDNA3.1map ……………………………………………61 附圖六、pGEM-T Easy map …………………………………………62 附圖七pEGFP/pECFP/pEYFP map……………………………………63

    1.Coffer PJ, Jin J, Woodgett JR .1998.Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem. J. 335: 1-13
    2. Derek P. Brazil and Brian A. Hemmings.2001. Ten years of protein kinase B signalling: a hard Akt to follow. TRENDS in Biochemical Sciences Vol.26 No.11.657-664.
    3. Jones PF, et al., 1997. Molecular cloning and identification of a serine/threonine protein kinase of second-messenger subfamily. Proc Natl Acad Sci U S A 88:4171-4175.
    4. Datta SR et al., 1999. Cellular survival: a play in three Akts. Genes Dev 13:2905-27
    5. Vivanco I et al., 2003. The phosphatidylinositol 3-kinase-Akt pathway in human cancer. Nature reviews 2:489-501
    6. Staal, S.P. et al. 1977 Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc. Natl. Acad. Sci. U. S. A. 74:3065–3067
    7. Staal, S.P. and Hartley, J.W. 1988 Thymic lymphoma induction by the AKT8 murine retrovirus. J. Exp. Med. 167,1259–1264
    8. Bellacosa,A., J.R. Testa, S.P. Staal, and P.N. Tsichlis. 1991.A retroviral oncogene, akt, encoding a serine threonine kinase containing an SH2-like region. Science 254:274-277.
    9. Coffer, P.J. and J.R. Woodgett.1991. Molecular cloning and characterization of a novel putative protein-serine kinase related to cAMP-dependent and protein kinase C families.Eur. J. Biochem. 201:475-481
    10. Mayer, B.J., R. Ren, K.L. Clark, and D. Baltimore. 1993. A putative modular domain present in diverse signalling proteins.Cell 73: 629–630.
    11. Musacchio, A., T. Gibson, P. Rice, J. Thompson, andM. Saraste.1993. The PH domain: A common piece in the structural pathwork of signaling proteins. Trends Biochem. Sci.18: 343–348.
    12. Datta, K., T.F. Franke, T.O. Chan, A. Makris, S.-I. Yang, D.R.Kaplan, D.K. Morrison, E.A. Golemis, and P.N. Tsichlis.
    1995. AH/PH domain-mediated interaction between Akt
    molecules and its potential role in Akt regulation. Mol. Cell.Biol. 15: 2304–2310.
    13. Bellacosa, A., T.F. Franke, M.E. Gonzalez-Portal, K. Datta, T.Taguichi, J. Gardner, J.Q. Cheng, J.R. Testa, and P.N. Tsichlis.1993. Structure, expression and chromosomal mapping of c-akt: Relationship to v-akt and its implications. Oncogene 8: 745–754.
    14. Burgering, B.M. and P.J. Coffer. 1995. Protein kinase B (c-Akt) in phosphatidylinosotol-3-OH kinase signal transduction. Nature 376: 599–602.
    15. Franke, T.F., S.I. Yang, T.O. Chan, K. Datta, A. Kazlauskas, D.K.Morrison, D.R. Kaplan, and P.N. Tsichlis. 1995. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidlyinositol 3-kinase. Cell 81:727–736.
    16. James, S.R., C.P. Downes, R. Gigg, S.J.A. Grove, A.B. Holmes,and D.R. Alessi. 1996. Specific binding of the Akt-1 protein kinase to phospatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem. J. 315: 709–713.
    17. Franke, T.F., D.R. Kaplan, L.C. Cantley, and A. Toker. 1997.
    Direct regulation of the Akt proto-oncogene product by
    phosphatidylinositol-3,4-bisphosphate. Science 275: 665–
    668.
    18. Frech, M.,M. Andjelkovic, E. Ingley, K.K. Reddy, J.R. Falck, and B.A. Hemmings. 1997. High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology
    domain of RAC/protein kinase B and their influence on kinase
    activity. J. Biol. Chem. 272: 8474–8481.
    19. Andjelkovic, M., D.R. Alessi, R. Meier, A. Fernandez, N.J.C.Lamb, M. Frech, P. Cron, P. Cohen, M. Lucocq, and B.A.
    Hemmings. 1997. Role of translocation in the activation and
    function of protein kinase B. J. Biol. Chem. 272: 31515–31524.
    20. Franke, T.F., K.D. Tartof, and P.N. Tsichlis. 1994. The SH2-like akt homology (AH) domain of c-akt is present in multiple copies in the genome of vertebrate and invertebrate eukaryotes. Cloning and characterization of the Drosophila melanogaster c-akt homolog Dakt1. Oncogene 9: 141–148.
    21. Kohn, A.D., S.A. Summers, M.J. Birnbaum, and R.A. Roth.
    1996. Expression of a constitutively active Akt ser/thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and
    glucose transporter 4 translocation. J. Biol. Chem. 271:
    31372–31378.
    22. Alessi, D.R., et al.,1996 Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15:6541–6551.
    23. Alessi, D.R., S.R. James, C.P. Downes, A.B. Holmes, P.R.J.
    Gaffney, C.B. Reese, and P. Cohen. 1997. Characterization
    of a 3-phosphoinositide-dependent protein kinase which
    phopshorylates and activates protein kinase B a. Curr. Biol.
    7: 261–269.
    24. Hanks, S.K., A.M. Quinn, and T. Hunter. 1988. The protein
    kinase family—conserved features and deduced phylogeny of
    the catalytic domains. Science 241: 42–52.
    25. Dos D. Sarbassov et al., 2005 Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. Science 307: 1098-1101.
    26. Brazil,D.P., Jongsun Park and Brian A. Hemmings. 2002. PKB binding proteins: getting in on the Akt. Cell 111:293-303.
    27. Maira, S.M., Galetic, I., Brazil, D.P., Kaech, S., Ingley, E., Thelen,M., and Hemmings, B.A. (2001). Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294, 374–380.
    28.Tianyan Gao, Frank Furnari, and Alexandra C. Newton.PHLPP: A Phosphatase that Directly Dephosphorylates Akt, Promote Apoptosis, and Supress Tumor Growth.2005. Molecular Cell. Vol.18. 13-24.
    29. Tanti, J.-F., S. Grillo, T. Gremeaux, P.J. Coffer, E. van Obberghen,and Y. le Marchand-Brustel. 1997. Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology 138: 2005–2010.
    30. Hajduch, E., D.R. Alessi, B.A. Hemmings, and H.S. Hundal.
    1998. Constitutive activation of protein kinase Ba by membrane targeting promotes glucose and system A amino acid
    transport, protein synthesis and inactivation of glycogen
    synthase kinase-3 in L6 muscle cells. Diabetes 47: 1006–
    1013.
    31. Cross, D.A., D.R. Alessi, P. Cohen, M. Andjelkovich, and B.A.Hemmings. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.
    32. Lefebvre, V., Mechin, M. C., Louckx M. P., Hue, L.(1996) J. Biol. Chem. 271:22289-22292.
    33.Kozma, S.C., and G. Thomas.2002.Regulation of cell size in growth developmenet and human disease:P3K, PKB and S6K.Bioassays. 24:65-71.
    34.Steller, H.1995.Science 267.1445-1449
    35. Anderson, C.N.G. and A.M. Tolkovsky. 1999. A role for MAPK/
    ERK in sympathetic neuron survival: Protection against a
    p53-dependent, JNK-independent induction of apoptosis by
    cytosine arabinoside. J. Neurosci. 19: 664–673.
    36. Hanada, M., Feng, J., and B.A. Hemmings.2004.Structure, regulation and function of PKB/Akt-A major therapeutic target. Biochemia et Biophysica Acta .1697:3-16.
    37. Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M.E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241.
    38. Zha, J., Harada, H., Yang and Korsmeyer, S. J.1996. Cell.87. 619-628.
    39. Nicholson, K.M., and N.G. Anderson.2002.The protein kinase B/Akt signaling pathway in human maliganacy. Cell signaling. 14: 381-395.
    40. Kane LP, Shapiro VS, Stokoe D, Weisss A.1999.Induction of NF-KB by the Akt/PKB kinase.Curr Biol. 9:601-604
    41. Cohen PT et al., 1997. Novel protein serine /threonine phosphatases: variety is the specific life. Trands Biochem Sci 22:245-51
    42. Estelle Sontag 2001 Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cellular Signalling 13:7-16.
    43. Kremmer, E., Ohst, K., Kiefer, J., Brewis, N. and Walter, G. (1997) Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit : abundant expression of both forms in cells. Mol. Cell. Biol. 17,1692-1701.
    44. Chen, J., Martin, B. L. and Brautigan, D. L. (1992) Regulation of protein serine threonine phosphatase type-2A by tyrosine phosphorylation. Science 257, 1261-1264.
    45. De Baere, I., Derua, R., Janssens, V., Van Hoof, C., Waelkens, E., Merlevede, W. and Goris, J. (1999) Purification of porcine brain protein phosphatase 2A leucine carboxyl
    methyltransferase and cloning of the human homologue. Biochemistry 38,16539-16547.
    46. Bryant, J. C., Westphal, R. S. and Wadzinski, B. E. (1999) Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Bα subunit. Biochem. J. 339, 241-246.
    47. Andjelkovic, M. et al., 1996 Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc. Natl. Acad. Sci. U. S. A. 93:5699–5704.
    48. Svante Resjo¨,, Olga Go¨ranssona, Linda Ha¨rndahla, Stanislaw Zolnierowiczb, Vincent Manganielloc, Eva Degermana 2002 Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cellular Signalling 14:231–238.
    49. Johanna Ivaska, Liisa Nissinen,Nina Immonen,John E. Eriksson,Veli-Matti Kähäri,and Jyrki Heino.,2002 Integrin α2β1 Promotes Activation of Protein Phosphatase 2A and
    Dephosphorylation of Akt and Glycogen Synthase Kinase 3 Molecular and cellular biology 22:1352–1359.
    50. PNAS 90 (1993), 8392-6.
    51. Zhou Songyang, David Baltimore, Lewis C. Cantley, David R. Kaplan, and Thomas F. Franke. 1997 Interleukin 3-dependent survival by the Akt protein kinase Proc. Natl. Acad. Sci. USA 94:11345–11350.
    52. Chi-Wu Chiang, Cindy Kanies, Kwang Woon Kim, Wei Bin Fang, Christina Parkhurst, Minhui Xie,Travis Henry,and Elizabeth Yang. 2003 Protein Phosphatase 2A Dephosphorylation of phosphoserine 112 Plays the Gatekeeper Role for BAD-Mediated Apoptosis. Molecular and cellular biology 23:6350-6362.
    53. Satoshi Ugi,Takeshi Imamura, Hiroshi Maegawa, Katsuya Egawa, Takeshi Yoshizaki,Kun Shi, Toshiyuki Obata, Yousuke Ebina, Atsunori Kashiwagi,and Jerrold M. Olefsky 2004 Protein Phosphatase 2A Negatively Regulates Insulin’s Metabolic Signaling Pathway by Inhibiting Akt (Protein Kinase B) Activity in 3T3-L1 Adipocytes. Molecular and cellular biology 24:8778-8789.
    54. Christine Van Hoof and Jozef Goris, 2004 PP2A fulfills its promises as tumor suppressor: Which subunits are important? Cancer Cell 5:105-106.
    55. Ryan S. Westphal, Kristin A. Anderson, Anthony R. Means,
    Brian E. Wadzinski, 1998 A Signaling Complex of Ca2+-Calmodulin–Dependent Protein Kinase IV and Protein Phosphatase 2A. Science 280:1258-1261.
    56. Ryan S. Westphal, R. Lane Coffee, Jr., Anthony Marotta, Steven L. Pelech, and Brian E. Wadzinski 1999 Identification of Kinase-Phosphatase Signaling Modules
    Composed of p70 S6 Kinase-Protein Phosphatase 2A (PP2A) and
    p21-activated Kinase-PP2A J. Biol. Chem. 274:687-692.
    57. Diana E Roopchand1, Joseph M Lee1, Serge Shahinian, Denis Paquette, Howard Bussey and Philip E Branton, 2001 Toxicity of human adenovirus E4orf4 protein in Saccharomyces cerevisiae results from interactions with the Cdc55 regulatory B subunit of PP2A. Oncogene 20:5279-5290.

    下載圖示 校內:2006-08-18公開
    校外:2006-08-18公開
    QR CODE