簡易檢索 / 詳目顯示

研究生: 廖又潁
Liao, You-Ying
論文名稱: 硫酸角質素雙醣的合成
Synthesis of Keratan Sulfate Disaccharides
指導教授: 洪上程
Hung, Shang-Cheng
葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 216
中文關鍵詞: 硫酸角質素醣胺聚醣有機合成醣化學
外文關鍵詞: keratan sulfate, glycosaminoglycan, organic synthesis, carbohydrate chemistry
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ABSTRACT i 摘要 ii 謝誌 iii LIST OF ABBREVIATIONS ix TABLE OF CONTENTS xiii LIST OF SCHEMES xv LIST OF FIGURES xvi LIST OF TABLES xx CHAPTER 1 INTRODUCTION 1 1-1 Glycoconjugates 2 1-2 Glycosaminoglycan Families 5 1-3 Keratan Sulfate 7 1-4 Keratan Sulfate-Binding Proteins and Their Biological Functions 10 1-5 Challenges in KS Synthesis 12 CHAPTER 2 LITERATURE REVIEW 13 2-1 Chemical Synthesis 13 2-1-1 Jun-ichi Tamura’s work 13 2-1-2 Chun-Hung Lin’s work 17 2-1-3 Xuechen Li’s work 19 2-2 Chemoenzymatic and Enzymatic Synthesis 22 CHAPTER 3 SYNTHETIC DESIGN 24 3-1 Synthetic Targets 24 3-2 Retrosynthetic Analysis 25 3-2-1 The Choice of Protecting Groups. 26 3-2-2 The Stereochemical Control of Glycosidic Bond Formation. 29 CHAPTER 4 RESULTS AND DISCUSSION 31 4-1 Synthesis and Characterization of the Common Disaccharide Building Block 31 4-1-1 Synthesis and Characterization of the Disaccharide Derivative 43 32 4-1-2 Synthesis and Characterization of the Disaccharide Derivative 46 43 4-1-3 Synthesis and Characterization of the Keratan Sulfate Disaccharide 51 52 4-2 Synthesis and Characterization of the Target Disaccharides 67 4-2-1 Synthesis and Characterization of the Target Disaccharide 52 72 4-2-2 Synthesis and Characterization of the Target Disaccharide 53 76 4-2-3 Synthesis and Characterization of the Target Disaccharide 55 85 4-2-4 Synthesis and Characterization of the Target Disaccharide 54 91 4-3 Summary of NMR Chemical Shifts (ppm) for Keratan Sulfate Disaccharides Before and After Sulfation at the 6 and 6’ Positions 99 CHAPTER 5 CONCLUSION 101 5-1 Synthesis of Common Disaccharide Building Block 51 101 5-2 Synthesis of Target Keratan Sulfate Disaccharides 52, 53, 54, 55. 103 5-3 Recommendations and Outlook 103 CHAPTER 6 EXPERIMENTAL METHODS 105 6-1 General Experimental Guidelines 105 6-2 Synthetic Procedures and Characterization Data 106 REFERENCE 134 APPENDICES 146

    (1) Stretton, A. O. The first sequence. Fred Sanger and insulin. Genetics 2002, 162, 527-532.
    (2) Sanger, F. Determination of nucleotide sequences in DNA. Science 1981, 214, 1205-1210.
    (3) Sanger, F.; Nicklen, S.; Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 5463-5467.
    (4) Sanger, F. Chemistry of insulin: determination of the structure of insulin opens the way to greater understanding of life processes. Science 1959, 129, 1340-1344.
    (5) Ryle, A. P.; Sanger, F.; Smith, L. F.; Kitai, R. The disulphide bonds of insulin. Biochem. J. 1955, 60, 541-556.
    (6) Fischer, E. Syntheses in the purine and sugar group. Nobelstiftelsen. Nobelprize.org, 1902, 12.
    (7) Aquino, R. S.; Park, P. W. Glycosaminoglycans and infection. Front. Biosci., Landmark Ed. 2016, 21, 1260-1277.
    (8) Varki, A. Biological roles of glycans. Glycobiology. 2017, 27, 3-49.
    (9) Wolfert, M. A.; Boons, G.-J. Adaptive immune activation: glycosylation does matter. Nat. Chem. Biol. 2013, 9, 776-784.
    (10) Shivatare, S. S.; Shivatare, V. S.; Wong, C.-H. Glycoconjugates: synthesis, functional studies, and therapeutic developments. Chem. Rev. 2022, 122, 15603-15671.
    (11) Broussard, A. C.; Boyce, M. Life is sweet: the cell biology of glycoconjugates. Mol. Biol. Cell. 2019, 30, 525-529.
    (12) Varki, A.; Cummings, R. D.; Aebi, M.; Packer, N. H.; Seeberger, P. H.; Esko, J. D.; Stanley, P.; Hart, G.; Darvill, A.; Kinoshita, T. Symbol nomenclature for graphical representations of glycans. Glycobiology 2015, 25, 1323-1324.
    (13) Fuster, M. M.; Esko, J. D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 2005, 5, 526-542.
    (14) Schnaar, R. L. Glycobiology simplified: diverse roles of glycan recognition in inflammation. J. Leukoc. Biol. 2016, 99, 825-838.
    (15) Gao, Y.; Luan, X.; Melamed, J.; Brockhausen, I. Role of glycans on key cell surface receptors that regulate cell proliferation and cell death. Cells. 2021, 10, 1252.
    (16) Crocker, P. R. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol. 2002, 12, 609-615.
    (17) Mettu, R.; Chen, C.-Y.; Wu, C.-Y. Synthetic carbohydrate-based vaccines: challenges and opportunities. J. Biomed. Sci. 2020, 27, 1-22.
    (18) Tse Sum Bui, B.; Haupt, K. Molecularly imprinted polymer hydrogel nanoparticles: synthetic antibodies for cancer diagnosis and therapy. ChemBioChem. 2022, 23, e202100598.
    (19) Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002, 12, 43R-56R.
    (20) Solá, R. J.; Griebenow, K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs. 2010, 24, 9-21.
    (21) Steimle, A.; Autenrieth, I. B.; Frick, J.-S. Structure and function: Lipid A modifications in commensals and pathogens. International J. Med. Microbiol. 2016, 306, 290-301.
    (22) Silhavy, T. J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414.
    (23) Sipione, S.; Monyror, J.; Galleguillos, D.; Steinberg, N.; Kadam, V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front. Neurosci. 2020, 14, 572965.
    (24) Wang, S. T.; Neo, B. H.; Betts, R. J. Glycosaminoglycans: sweet as sugar targets for topical skin anti-aging. Clin. Cosmet. Investig. Dermatol. 2021, 1227-1246.
    (25) Couchman, J. R. Transmembrane signaling proteoglycans. Annu. Rev. Cell Dev. Biol. 2010, 26, 89-114.
    (26) Iozzo, R. V.; Schaefer, L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015, 42, 11-55.
    (27) Lambaerts, K.; Wilcox-Adelman, S. A.; Zimmermann, P. The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr. Opin. Cell Biol. 2009, 21, 662-669.
    (28) Jackson, R. L.; Busch, S. J.; Cardin, A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 1991, 71, 481-539.
    (29) Mende, M.; Bednarek, C.; Wawryszyn, M.; Sauter, P.; Biskup, M. B.; Schepers, U.; Bräse, S. Chemical Synthesis of Glycosaminoglycans. Chem. Rev. 2016, 116, 8193-8255.
    (30) Shi, D. L.; Sheng, A. R.; Chi, L. L. Glycosaminoglycan-Protein Interactions and Their Roles in Human Disease. Front. Mol. Biosci. 2021, 8, 15.
    (31) Marinho, A.; Nunes, C.; Reis, S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021, 11, 34.
    (32) Graça, M. F. P.; Miguel, S. P.; Cabral, C. S. D.; Correia, I. J. Hyaluronic acid-Based wound dressings: A review. Carbohydr. Polym. 2020, 241, 17.
    (33) Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells. 2020, 9, 19.
    (34) Zhai, P. S.; Peng, X. X.; Li, B. Q.; Liu, Y. P.; Sun, H. C.; Li, X. W. The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol. 2020, 151, 1224-1239.
    (35) Dosio, F.; Arpicco, S.; Stella, B.; Fattal, E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv. Drug Deliv. Rev. 2016, 97, 204-236.
    (36) Ricard-Blum, S.; Vivès, R. R.; Schaefer, L.; Götte, M.; Merline, R.; Passi, A.; Heldin, P.; Magalhaes, A.; Reis, C. A.; Skandalis, S. S.; et al. A biological guide to glycosaminoglycans: current perspectives and pending questions. Febs J. 2024, 291, 3331-3366.
    (37) Whitelock, J. M.; Iozzo, R. V. Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 2005, 105, 2745-2764.
    (38) Linhardt, R. J. 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J. Med. Chem. 2003, 46, 2551-2564.
    (39) Rabenstein, D. L. Heparin and heparan sulfate: structure and function. Nat. Prod. Rep. 2002, 19, 312-331.
    (40) Cohen, E.; Merzendorfer, H. Extracellular sugar-based biopolymers matrices; Springer, 2019.
    (41) Yang, J. H.; Wang, S. G. Polysaccharide-Based Multifunctional Hydrogel Bio-Adhesives for Wound Healing: A Review. Gels. 2023, 9, 24.
    (42) Kesharwani, P.; Chadar, R.; Sheikh, A.; Rizg, W. Y.; Safhi, A. Y. CD44-Targeted Nanocarrier for Cancer Therapy. Front. Pharmacol. 2022, 12, 33.
    (43) Fawcett, J. W.; Oohashi, T.; Pizzorusso, T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 2019, 20, 451-465.
    (44) Gregori, D.; Giacovelli, G.; Minto, C.; Barbetta, B.; Gualtieri, F.; Azzolina, D.; Vaghi, P.; Rovati, L. C. Association of Pharmacological Treatments With Long-term Pain Control in Patients With Knee Osteoarthritis A Systematic Review and Meta-analysis. J. Am. Med. Assoc. 2018, 320, 2564-2579.
    (45) Wu, Y.; Bosman, G. P.; Chapla, D.; Huang, C.; Moremen, K. W.; de Vries, R. P.; Boons, G.-J. A biomimetic synthetic strategy can provide keratan sulfate I and II oligosaccharides with diverse fucosylation and sulfation patterns. J. Am. Chem. Soc. 2024, 146, 9230-9240.
    (46) Caterson, B.; Melrose, J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 2018, 28, 182-206.
    (47) Leistner, C. M.; Gruen‐Bernhard, S.; Glebe, D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell. Microbiol. 2008, 10, 122-133.
    (48) SUZUKI, M. Biochemical studies on carbohydrates L. Prosthetic group of corneamucoid. J. Biochem. 1939, 30, 185-191.
    (49) Meyer, K.; Bhavanandan, V.; Yung, D.; Lee, L.; Howe, C. The keratosulfate-like mucopolysaccharide of chick allantoic fluid. Proc. Natl. Acad. Sci. U.S.A. 1967, 58, 1655-1659.
    (50) Meyer, K.; Linker, A.; Davidson, E. A.; Weissmann, B. The mucopolysaccharides of bovine cornea. J. Biol. Chem. 1953, 205, 611-616.
    (51) Meyer‐Puttlitz, B.; Milev, P.; Junker, E.; Zimmer, I.; Margolis, R. U.; Margolis, R. K. Chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of nervous tissue: developmental changes of neurocan and phosphacan. J. Neurochem. 1995, 65, 2327-2337.
    (52) Plaas, A. H.; West, L. A.; Midura, R. J. Keratan sulfate disaccharide composition determined by FACE analysis of keratanase II and endo-β-galactosidase digestion products. Glycobiology 2001, 11, 779-790.
    (53) Plaas, A.; Neame, P.; Nivens, C.; Reiss, L. Identification of the keratan sulfate attachment sites on bovine fibromodulin. J. Biol. Chem. 1990, 265, 20634-20640.
    (54) Lauder, R. M.; Huckerby, T. N.; Nieduszynski, I. A. The structure of the keratan sulphate chains attached to fibromodulin isolated from articular cartilage. Eur. J. Biochem. 1996, 242, 402-409.
    (55) Krusius, T.; Finne, J.; Margolis, R.; Margolis, R. Identification of an O-glycosidic mannose-linked sialylated tetrasaccharide and keratan sulfate oligosaccharides in the chondroitin sulfate proteoglycan of brain. J. Biol. Chem. 1986, 261, 8237-8242.
    (56) Weyers, A.; Yang, B.; Solakyildirim, K.; Yee, V.; Li, L.; Zhang, F.; Linhardt, R. J. Isolation of bovine corneal keratan sulfate and its growth factor and morphogen binding. FEBS. J. 2013, 280, 2285-2293.
    (57) Kinne, R.; Fisher, L. Keratan sulfate proteoglycan in rabbit compact bone is bone sialoprotein II. J. Biol. Chem. 1987, 262, 10206-10211.
    (58) Sommarin, Y.; Wendel, M.; Shen, Z.; Hellman, U.; Heinegård, D. Osteoadherin, a cell-binding keratan sulfate proteoglycan in bone, belongs to the family of leucine-rich repeat proteins of the extracellular matrix. J. Biol. Chem. 1998, 273, 16723-16729.
    (59) Gori, F.; Schipani, E.; Demay, M. B. Fibromodulin is expressed by both chondrocytes and osteoblasts during fetal bone development. J. Cell. Biochem. 2001, 82, 46-57.
    (60) Nakamura, H.; Hirata, A.; Tsuji, T.; Yamamoto, T. Immunolocalization of keratan sulfate proteoglycan in rat calvaria. Arch. Histol. Cytol. 2001, 64, 109-118.
    (61) Igwe, J. C.; Gao, Q.; Kizivat, T.; Kao, W. W.; Kalajzic, I. Keratocan is expressed by osteoblasts and can modulate osteogenic differentiation. Connect. Tissue. Res. 2011, 52, 401-407.
    (62) Nikdin, H.; Olsson, M.-L.; Hultenby, K.; Sugars, R. V. Osteoadherin accumulates in the predentin towards the mineralization front in the developing tooth. PloS. one. 2012, 7, e31525.
    (63) Chirivella, L.; Kirstein, M.; Ferrón, S. R.; Domingo-Muelas, A.; Durupt, F. C.; Acosta-Umanzor, C.; Cano-Jaimez, M.; Pérez-Sánchez, F.; Barbacid, M.; Ortega, S. Cyclin-dependent kinase 4 regulates adult neural stem cell proliferation and differentiation in response to insulin. Stem Cells. 2017, 35, 2403-2416.
    (64) Ohtsubo, K.; Marth, J. D. Glycosylation in cellular mechanisms of health and disease. cell. 2006, 126, 855-867.
    (65) Melrose, J. The Glycosaminoglycan/Glycan Interactome: A Bioinformatic Platform: An Evolutionary Conserved Biosensor Platform Controlling Cell Behaviour, Tissue Morphogenesis, Tissue Assembly; Scholars Press, Omniscrictum GmbH and Co KG, 2016.
    (66) Coulson-Thomas, V. J.; Coulson-Thomas, Y. M.; Gesteira, T. F.; de Paula, C. A. A.; Carneiro, C. R.; Ortiz, V.; Toma, L.; Kao, W. W.-Y.; Nader, H. B. Lumican expression, localization and antitumor activity in prostate cancer. Exp. Cell. Res. 2013, 319, 967-981.
    (67) Tasheva, E. S.; Koester, A.; Paulsen, A. Q.; Garrett, A. S.; Boyle, D. L.; Davidson, H. J.; Song, M.; Fox, N.; Conrad, G. W. Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol. Vis. 2002, 8, 407-415.
    (68) Nguyen-Ba-Charvet, K. T.; Chédotal, A. Role of Slit proteins in the vertebrate brain. Physiol. Paris. 2002, 96, 91-98.
    (69) Bashaw, G. J.; Kidd, T.; Murray, D.; Pawson, T.; Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell. 2000, 101, 703-715.
    (70) Howitt, J. A.; Clout, N. J.; Hohenester, E. Binding site for Robo receptors revealed by dissection of the leucine‐rich repeat region of Slit. EMBO. J. 2004, 23, 4406-4412.
    (71) Funderburgh, J. L. Keratan sulfate biosynthesis. IUBMB. Life. 2002, 54, 187-194.
    (72) Funderburgh, J. L. Mini Review Keratan sulfate: structure, biosynthesis, and function. Glycobiology 2000, 10, 951-958.
    (73) Wu, Y.; Vos, G. M.; Huang, C.; Chapla, D.; Kimpel, A. L.; Moremen, K. W.; de Vries, R. P.; Boons, G.-J. Exploiting substrate specificities of 6-O-sulfotransferases to enzymatically synthesize keratan sulfate oligosaccharides. JACS Au 2023, 3, 3155-3164.
    (74) Kobayashi, M.; Yamazaki, F.; Ito, Y.; Ogawa, T. A synthetic approach to keratan sulfate I: Synthesis of trisulfated glycotetraose. Tetrahedron Lett. 1989, 30, 4547-4550.
    (75) Misra, A. K.; Agnihotri, G.; Madhusudan, S. K.; Tiwari, P. Practical synthesis of sulfated analogs of lactosamine and sialylated lactosamine derivatives. J. Carbohydr. Chem. 2004, 23, 191-199.
    (76) Pazynina, G. V.; Severov, V. V.; Maisel, M. L.; Belyanchikov, I. M.; Bovin, N. V. Synthesis of mono-, di-and tri-O-sulfated N-acetyllactosamines in a form suitable for glycochip printing. Mendeleev Commun. 2008, 18, 238-240.
    (77) Ovchinnikova, T. V.; Shipova, E. V.; Sablina, M. A.; Pazynina, G. V.; Popova, I. S.; Tuzikov, A. B.; Bovin, N. V. Synthesis of monosulfated saccharides in the spacered form. Mendeleev Commun. 2002, 12, 213-215.
    (78) Ozaki, H.; Asano, T.; Tanaka, H.-N.; Komura, N.; Ando, H.; Ishida, H.; Imamura, A. Blockwise synthesis of polylactosamine fragments and keratan sulfate oligosaccharides comprised of dimeric Gal β (1→4) GlcNAc6S β. Carbohydr. Res. 2022, 512, 108502.
    (79) Kobayashi, M.; Yamazaki, F.; Ito, Y.; Ogawa, T. A regio-and stereo-controlled synthesis of β-D-Glcp NAc6SO3-(1→3)-β-D-Galp6SO3-(1→4)- β- D -GlcpNAc6SO3-(1→3)- D -Galp, a linear acidic glycan fragment of keratan sulfate I. Carbohydr. Res. 1990, 201, 51-67.
    (80) Takeda-Okuda, N.; Yamaguchi, Y.; Uzawa, J.; Tamura, J.-i. Synthesis of a biotinylated keratan sulfate tetrasaccharide composed of dimeric Galβ1-4GlcNAc6Sβ. Carbohydr. Res. 2017, 452, 97-107.
    (81) Takeda, N.; Tamura, J. Synthesis of biotinylated keratan sulfate repeating disaccharides. Biosci., Biotechnol., Biochem. 2014, 78, 29-37.
    (82) Tu, Z.; Hsieh, H. W.; Tsai, C. M.; Hsu, C. W.; Wang, S. G.; Wu, K. J.; Lin, K. I.; Lin, C. H. Synthesis and characterization of sulfated Gal-β-1,3/4-GlcNAc disaccharides through consecutive protection/glycosylation steps. Chem.─Asian J. 2013, 8, 1536-1550.
    (83) Peng, P.; Liu, H.; Gong, J.; Nicholls, J. M.; Li, X. A facile synthesis of sialylated oligolactosamine glycans from lactose via the Lafont intermediate. Chem. Sci. 2014, 5, 3634-3639.
    (84) Lafont, D.; Boullanger, P.; Carvalho, F.; Vottero, P. A convenient access to β-glycosides of N-acetyllactosamine. Carbohydr. Res. 1997, 297, 117-126.
    (85) Lafont, D.; Guilloux, P.; Descotes, G. A new synthesis of 1, 2-trans-2-acetamido-2-deoxyglycopyranosides via 1, 2-trans-2-deoxy-2-iodoglycosyl azides. Carbohydr. Res. 1989, 193, 61-73.
    (86) Wu, Y.; Bosman, G. P.; Vos, G. M.; Uslu, E.; Chapla, D.; Huang, C.; Moremen, K. W.; Boons, G.-J. Chemoenzymatic Synthesis of Keratan Sulfate Oligosaccharides Using UDP-Galactose-6-aldehyde To Control Sulfation at Galactosides. Org. Lett. 2024, 26, 8272-8277.
    (87) Ohmae, M.; Sakaguchi, K.; Kaneto, T.; Fujikawa, S.; Kobayashi, S. Keratanase II-catalyzed synthesis of keratan sulfate oligomers by using sugar oxazolines as transition-state analogue substrate monomers: a novel insight into the enzymatic catalysis mechanism. Chembiochem 2007, 8, 1710-1720.
    (88) Akama, T. O.; Misra, A. K.; Hindsgaul, O.; Fukuda, M. N. Enzymatic synthesis in vitro of the disulfated disaccharide unit of corneal keratan sulfate. J. Biol. Chem. 2002, 277, 42505-42513.
    (89) Lange, B.; Šimonová, A.; Fischöder, T.; Pelantová, H.; Křen, V.; Elling, L. Towards Keratan Sulfate–Chemoenzymatic Cascade Synthesis of Sulfated N‐Acetyllactosamine (LacNAc) Glycan Oligomers. Adv. Synth. Cataly. 2016, 358, 584-596.
    (90) Greene, T. W.; Wuts, P. G. Protective groups in organic synthesis. 1999.
    (91) Zhu, X.; Schmidt, R. R. New principles for glycoside‐bond formation. Angew. Chem., Int. Ed. 2009, 48, 1900-1934.
    (92) Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, P. H. An empirical understanding of the glycosylation reaction. J. Am. Chem. Soc. 2018, 140, 11942-11953.
    (93) Juaristi, E.; Cuevas, G. Recent studies of the anomeric effect. Tetrahedron 1992, 48, 5019-5087.
    (94) Demchenko, A. V. 1,2-cis O-Glycosylation: methods, strategies, principles. Curr. Org. Chem. 2003, 7, 35-79.
    (95) Fairbanks, A. J. Applications of Shoda's reagent (DMC) and analogues for activation of the anomeric centre of unprotected carbohydrates. Carbohydr. Res. 2021, 499, 108197.
    (96) Tanaka, T.; Huang, W. C.; Noguchi, M.; Kobayashi, A.; Shoda, S.-i. Direct synthesis of 1,6-anhydro sugars from unprotected glycopyranoses by using 2-chloro-1,3-dimethylimidazolinium chloride. Tetrahedron Lett. 2009, 50, 2154-2157.
    (97) Binette, A.; Gagnon, J. Regioselective silylation of N-phthaloylchitosan with TBDMS and TBDPS groups. Biomacromolecules 2007, 8, 1812-1815.
    (98) Dimakos, V.; Taylor, M. S. eSite-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem. Rev. 2018, 118, 11457-11517.
    (99) Taylor, M. S. Catalysis Based on Reversible Covalent Interactions of Organoboron Compounds. Accounts Chem. Res. 2015, 48, 295-305.
    (100) Lee, D.; Williamson, C. L.; Chan, L. N.; Taylor, M. S. Regioselective, Borinic Acid-Catalyzed Monoacylation, Sulfonylation and Alkylation of Diols and Carbohydrates: Expansion of Substrate Scope and Mechanistic Studies. J. Am. Chem. Soc. 2012, 134, 8260-8267.
    (101) Chan, L. N.; Taylor, M. S. Regioselective Alkylation of Carbohydrate Derivatives Catalyzed by a Diarylborinic Acid Derivative. Org. Lett. 2011, 13, 3090-3093.
    (102) Takamura, T.; Tejima, S. Chemical modification of lactose .8. studies on reactivities of secondary hydroxyl-groups in 1,6-anhydro-4',6'-O-benzylidene-β-lactose by selective para-toluenesulfonylation. Chem. Pharm. Bull. 1978, 26, 1117-1122.
    (103) Chiba, T.; Haga, M.; Tejima, S. Chemical modification of lactose .6. studies on reactivities of secondary hydroxyl-groups in 1,6-anhydro-4',6'-O-benzylidene-β-lactose by selective benzoylation. Carbohydr. Res. 1975, 45, 11-18.
    (104) Černý, M.; Staněk, J.; Pacák, J. Syntheses with anhydro sugars. VI. The reactivity of p-toluenesulfonyl esters of 1,6-anhydro-β-D-glucopyranose during the formation of epoxy derivatives in alkaline medium. Collect. Czech. Chem. C. 1969, 34, 849-856.
    (105) Newth, F. Sugar epoxides. Q. Rev., Chem. Soc. 1959, 13, 30-47.
    (106) Winstein, S.; Lucas, H. Retention of configuration in the reaction of the 3-bromo-2-butanols with hydrogen bromide. J. Am. Chem. Soc. 1939, 61, 1576-1581.
    (107) Xia, W.; Budge, S. M.; Lumsden, M. D. 1H-NMR Characterization of Epoxides Derived from Polyunsaturated Fatty Acids. J. Am. Oil Chem. Soc. 2016, 93, 467-478.
    (108) Williamson, A. XLV. Theory of etherification. Philos. Mag. 1850, 37, 350-356.
    (109) Kulkarni, S. S.; Hung, S.-C. Highlights in Organic Chemistry (Metal Trifluoromethanesulfonates as Versatile Catalysts in Carbohydrate Synthesis). Lett. Org. Chem. 2005, 2 (8), 670-677.
    (110) Lee, J.-C.; Tai, C.-A.; Hung, S.-C. Sc(OTf)3-catalyzed acetolysis of 1,6-anhydro-β-hexopyranoses and solvent-free per-acetylation of hexoses. Tetrahedron Lett. 2002, 43, 851-855.
    (111) Li, Y.; Mo, H.; Lian, G.; Yu, B. Revisit of the phenol O-glycosylation with glycosyl imidates, BF3·OEt2 is a better catalyst than TMSOTf. Carbohydr. Res. 2012, 363, 14-22.
    (112) Nielsen, M. M.; Stougaard, B. A.; Bols, M.; Glibstrup, E.; Pedersen, C. M. Glycosyl Fluorides as Intermediates in BF3·OEt2‐Promoted Glycosylation with Trichloroacetimidates. Eur. J. Org. Chem. 2017, 2017, 1281-1284.
    (113) Andersen, S. M.; Heuckendorff, M.; Jensen, H. H. 3-(Dimethylamino)-1-propylamine: a cheap and versatile reagent for removal of byproducts in carbohydrate chemistry. Org. Lett. 2015, 17, 944-947.
    (114) Schmidt, R. R.; Michel, J. Direct O-glycosyl trichloroacetimidate formation, nucleophilicity of the anomeric oxygen atom. Tetrahedron Lett. 1984, 25, 821-824.
    (115) Karplus, M. Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 1963, 85, 2870-2871.
    (116) Bock, K.; Pedersen, C. A study of 13CH coupling constants in hexopyranoses. J. Chem. Soc., Perkin Trans. 2 1974, 293-297.
    (117) Bock, K.; Lundt, I.; Pedersen, C. Assignment of anomeric structure to carbohydrates through geminal13C-H coupling constants. Tetrahedron Lett. 1973, 14, 1037-1040.
    (118) Allison, C.; McMahon, T. How strong is the silicon carbon double bond in fluoro-and methyl-substituted silaethylenes? An experimental determination of. pi. bond strengths. J. Am. Chem. Soc. 1990, 112, 1672-1677.
    (119) Cui, B.; Jia, S.; Tokunaga, E.; Shibata, N. Defluorosilylation of fluoroarenes and fluoroalkanes. Nat. Commun. 2018, 9, 4393.
    (120) Chiu, L.-T.; Sabbavarapu, N. M.; Lin, W.-C.; Fan, C.-Y.; Wu, C.-C.; Cheng, T.-J. R.; Wong, C.-H.; Hung, S.-C. Trisaccharide sulfate and its sulfonamide as an effective substrate and inhibitor of human endo-O-sulfatase-1. J. Am. Chem. Soc. 2020, 142, 5282-5292.

    無法下載圖示
    2028-08-04公開
    電子論文及紙本論文均尚未授權公開
    QR CODE