| 研究生: |
范仲暐 Fan, Daniel-S. |
|---|---|
| 論文名稱: |
利用積分球系統量測混濁物質在可見光至遠紅外光波段之光學參數 Measuring the optical properties of turbid media from Visible to NIR by using single integrating sphere system |
| 指導教授: |
曾盛豪
Tseng, Sheng-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 光譜儀 、積分球 、吸收係數 、散射係數 |
| 外文關鍵詞: | Spectrometer, Integrating sphere, Absorption coefficient, Scattering coefficient |
| 相關次數: | 點閱:146 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文的研究中,我們利用了單積分球系統以及Adding-Doubling演算法來量測混濁物質的光學參數。在生醫光學的領域,吸收與散射係數是將生物組織與光學反應量化的兩個重要參數。我們訂製所需要的各項元件來架構單積分球量測系統,也利用了已知光學參數的混濁物質來調整量測時所需要的各項參數,有些混濁物質的光學參數與生物組織是相似的,因此也提供了此系統未來在量測發展上的可能性。在我們量測所調製混濁物質的實驗中,我們也看到了吸收與散射物質在等比例增減時的特性。此系統目前可量測波長範圍是500-1000奈米,在不同光學參數的混濁物量測中,我們也分析出這樣的架構在量測上的限制以及可能的改善方法。
In this study, we demonstrate the use of optical method, single integrating sphere system with inverse adding-doubling algorithm, to determine optical properties of turbid media which including absorption and scattering materials, the absorption(μa)and scattering coefficient(μs’) is of great concern in the field of biomedical optics. We tailor made the appropriate hardware structure to measure liquid phantom as our turbid media, which some of the optical properties of this turbid media is in the range of biological tissue therefore is the indicator of future work for this system. In the measurement of turbid media, we also see the proportionality of turbid media. The system we constructed is available for the wavelength range from 500-1000nm. limitations of the structure in this system is also revealed in this study.
1. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," Journal of Physics D: Applied Physics 38, 2543-2555 (2005).
2. B. C. M. S. Patterson, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. (1989).
3. R. Nachabe, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, "Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm," Journal of biomedical optics 15, 037015 (2010).
4. G. Z. a. A. Dimou, "Light scattering spectroscopy of human skin in vivo," Opt. Express (2009).
5. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," Journal of biomedical optics 11, 064026 (2006).
6. B. C. W. N.S. Patterson, and D, R, Wyman, "The Propagation of Optical Radiation in Tissue. II Optical properties of tissue," Lasers Med, Sci, (1991).
7. M. S. P. B.S. Wilson, and S.T. Flock, "Indirect versus direct techniques for the measurement of the optical properties of tissue," Photochem, Photobiol. (1987).
8. B. C. W. S. T. Flock, and M. S. Patterson,, "Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm," Med. Phys. (1987).
9. M. J. C. V. G. Scott A. Prahl, and Ashley J.Welch, "Determining the optical properites of turbid media by using adding-doubling method," (1993
).
10. P. Kubelka, "New contributions to the optics of intensely light-scattering materials. Part I," J. Opt. Am (1948).
11. P. Kubelka, "Errata: new contributions to the optics of intensely light-scattering materials,," J. Opt. Soc. Am. (1948).
12. P. Kubelka, "New contributions to the optics of intenselylight-scattering materials. Part II: Nonhomogeneous layers," J. Opt. Soc. Am. (1954).
13. J. T. Atkins, "Optical properties of turbid materials," in The Biologic Effects of Ultraviolet Radiation (With Emphasis on
the Skin),," F. Urbach, ed. (1969).
14. S. Q. Duntley, "The optical properties of diffusing materials,"" J. Opt. Soc. Am. (1942).
15. A. L. Lathrop, "Diffuse scattered radiation theories of Duntley
and of Kubelka-Munk," J. Opt. Soc. Am. (1965).
16. B. L. Diffey, "A mathematical model for ultraviolet optics in
skin," Phys. Med. (1983).
17. M. R. P. G. M. LaMuraglia, N. S. Nishioka, S. Obremski,, and a. R. Birngruber, "Optical properties of human arterial
thrombus, vascular grafts, and sutures: implications, for
selective laser thrombus ablation," IEEE J. Quantum Electron. (1990).
18. C. D. A. Vogel, R. Nuffer, and R. Birngruber, "Optical properties of human sclera, and their consequences for transscleral laser applications," Lasers Surg. Med (1991).
19. P. S. M. a. L. W. Richards, "Multiple scattering calculations for technology," Appl. Opt. (1971).
20. S. L. J. a. S. A. Prahl, and Med, "Modeling optical and thermal
distributions in tissue during laser irradiation," Lasers Surg. Med (1987).
21. S. A. P. G. Yoon, and A. J. Welch, "Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media " Appl. Opt. (1989).
22. H. C. v. d. Hulst, "Multiple Light Scattering " Academic, New
York (1980).
23. G. W. K. G. N. Plass, and F. E. Catchings, "Matrix operator theory of radiative transfer. 1: Rayleigh scattering
" Appl. Opt. (1973).
24. B. C. W. a. G. Adam, "A Monte Carlo model for the absorption and flux distributions of light in tissue " Med.
Phys, Med, Biol. (1983).
25. B. L. I. a. M. Clinic, http://dosi.bli.uci.edu/research/.
26. S. A. Prahl, "The Adding-Doubling Method," Optical-Thermal Response of Laser-Irradiated Tissue (1998).
27. W. J. Wiscombe, "On initialization, error and flux conservation in the doubling method," Journal of Quantitative Spectroscopy and Radiative Transfer 16, 637-658 (1976).
28. ZEISS, "Education in Microscopy and Digital Imaging," http://zeiss-campus.magnet.fsu.edu/.
29. Wikipedia, "WiKipedia," http://en.wikipedia.org/wiki/Tungsten-halogen_lamp.
30. "PIXIS for spectroscopy QE curves," http://www.princetoninstruments.com/products/speccam/pixis/dsheet.aspx.
31. E.-O. S. Inc, "EOS receiver modules " http://www.eosystems.com/.
32. P. Instruments, "PIXIS System USER MANUAL ".
33. S.-P. Yeh, "Measuring the optical properties of superficial turbid sample using the steady state frequency domain photon migration system," Master Thesis (2012).
34. H. J. v. Staveren, C. J. M. Moes, J. v. Marie, S. A. Prahl, and M. J. C. v. Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl Optics 30, 4507-4514 (1991).
35. B. W. Pogue, and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," Journal of biomedical optics 11, 041102 (2006).
36. V. W. R. Woodward, R. Pye, B. E. Cole, D. D. Arnone, E. H., and a. M. P. Linfield, "Terahertz pulse imaging of ex vivo basal
cell carcinoma " J. Invest. Dermatol. (2003).
37. R. S. L. M. McIntosh, M. Jackson, H. H. Mantsch, J. R., and M. H. Mansfield, A. N. Crowson, and J. W. Toole, "Towards non-invasive screening of skin lesions by near-infrared spectroscopy
" J. Invest. Dermatol (2001).
38. D. J. Segelstein, "The complex refractive index of water," http://omlc.ogi.edu/spectra/water/abs/segelstein81.html.
39. A. P. R.L.P. van Veen and H.J.C.M. Sterenborg, A. Torricelli and R. Cubeddu, "Optical Absorption of Fat," http://omlc.ogi.edu/spectra/fat/.
40. T. V. V, "Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis vol TT38 " Washington:SPIE Press (2000).
41. F. T. Mourant J R, Boyer J, Johnson T M and Bigio I J, "Predictions and measurements of scattering andabsorption over broad wavelength ranges in tissue phantoms
" Appl. Opt
(1997 ).
42. S. J. M. a. K. G, "Optical scattering propertiesof soft tissue: a discrete particle model " Appl. Opt. ( 1998 ).
43. W. R. K, "Modelling optical properties of soft tissue by fractal distribution of scatterers," J. Mod. Opt. ( 2000 ).
44. M. K. C Rebecca Simpson, Mtthias Essenpreis and Mark Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys, Med, Biol. (1998).
45. S. Prahl, "http://omlc.ogi.edu/software/iad/," (2007).