簡易檢索 / 詳目顯示

研究生: 馮脩文
Feng, Hsiu-Wen
論文名稱: 芳香蠟燭燃燒時奈米微粒之逸散特徵
Characteristics of Nanoparticle Emissions during the Burning of Fragranced Candles
指導教授: 蔡朋枝
Tsai, Perng-Jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 47
中文關鍵詞: 芳香蠟燭奈米微粒排放率排放係數終生每日暴露劑量
外文關鍵詞: Fragranced candle, nanoparticle, emission rate, emission factor, LADD
相關次數: 點閱:120下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於瞭解芳香蠟燭在不同組成及燃燒環境操作條件下,產生之奈米微粒粒徑分佈特徵,及推估工作人員呼吸道頭區 (H)、氣管支氣管區 (TB)、及肺泡區 (A) 奈米微粒之個數與表面積濃度暴露情形,並瞭解其排放率與排放係數,最後進行芳療業者奈米微粒之呼吸道終生每日平均暴露劑量(Life-time Average Daily Dose, LADD)。本研究使用一暴露腔進行芳香蠟燭燃燒測試,測試前並對其測試環境之穩定性及均勻性加以確認。測試之芳香蠟燭成分組合包括三種薰衣草精油添加比例 (0 %、3 %及9 %),測試之環境為在固定相對濕度(RH=70 %)下之三種空氣換氣率 (1.5 ACH、3.0 ACH及5.0 ACH),採樣方法以Modified Electrical Aerosol Detector進行奈米微粒之粒徑分布量測。研究結果顯示:(1) 全部測試之芳香蠟燭在不同ACH下所產生之奈米微粒CMD均為10.7 nm,而相同成份之蠟燭其σg隨著ACH上升會有下降之趨勢; (2) 各種芳香蠟燭在不同ACH下,隨著ACH增加其個數濃度均有增加的趨勢。此外,總表面積濃度與總個數濃度亦有相同的趨勢; (3) 不同精油添加比例芳香蠟燭在相同ACH燃燒時,其個數濃度會隨精油添加比例增加而下降。此外,其總表面積濃度之結果和總個數濃度亦有一致性的趨勢; (4) 芳香蠟燭燃燒生成之奈米微粒沉降在不同呼吸道區域之個數濃度,在不同精油添加比例之芳香蠟燭在不同空氣置換率下,皆呈A區>TB區>H區之趨勢。從表面積濃度結果來看,亦呈相同趨勢; (5)在不同ACH下,吸入奈米微粒之LADD會隨著ACH增加而增加; (6)芳療業者之奈米微粒LADD較其他職場之奈米微粒暴露來得高,顯示其暴露風險有其考量之必要性。本研究建議未來進一步之研究芳香蠟燭逸散之奈米微粒毒理特性; 另有鑑於增加ACH會導致LADD之上升,故減少暴露時間與蠟燭使用量為減少暴露之有效策略。

    The aim of this study was to characterize the emission of nanoparticles, assess concentrations of both number and surface area of nanoparticles deposited in different respiratory tract regions during the burning of fragranced candle, and to assess the life-time average daily dose (LADD) of a aromatherapy worker. The whole study was conducted in an exposure chamber with confirmed stability and uniformity. The exposure chamber was specified at fixed relative humidity of 70 % but with three air exchange rates of 1.5, 3.0 and 5.0 ACH. Three tested fragranced candles were tested containing 0 %、3 % and 9 % lavender essence, respectively. All air samples were measured by a modified electrical aerosol detector. Results show that (1) combustion of all fragranced candles will result in the generation of nanoparticles with a constant CMD of 10.7 nm, but σg decreased as ACH increased; (2) the emitted nanoparticle number concentrations increased as ACH increased, and the same trend was found in the corresponding surface area concentrations; (3) the emitted nanoparticle number concentrations decreased as the fraction of added essence increased, and the same trend was found in the corresponding surface area concentrations; (4) all emitted number and surface area concentration deposited in the respiratory tract shared the same trend as: alveolar region > trachelobronchial region > head region; (5) LADD increased as ACH increased; and (6) the aromatherapy worker was found with higher LADD than those of other occupations. It is suggested that more toxicological studies are needed to investigate nanoparticles emitted from the combustion of fragranced candles. Since the increase of the ACH will lead to the increase in LADD, reducing exposure time and the amount of candle used will be a better control strategy for reducing exposures.

    第1章 緒論1 1-1研究背景與動機1 1-2研究目的3 第2章 文獻回顧4 2-1芳香蠟燭組成與特性4 2-2 蠟燭燃燒過程與奈米微粒形成機制4 2-3 奈米微粒與健康危害5 2-4 芳香蠟燭與奈米微粒排放情形6 2-5勞工奈米微粒暴露評估7 2-6 奈米量測設備之開發與應用8 第3章 研究架構與方法13 3-1研究架構13 3-2研究方法與步驟13 3-2-1暴露腔系統建置13 3-2-2芳香蠟燭材料與保存14 3-2-3暴露腔環境條件相對濕度、溫度及空氣置換率測試範圍14 3-2-4暴露腔穩定性與均勻性測試14 3-2-5採樣設備15 3-3資料處理15 3-3-1 MEAD量測資料分析15 3-3-2不同薰衣草精油添加比例之芳香蠟燭和空氣置換率下之排放率和排放係數推估16 3-3-3使用芳香蠟燭呼吸道之終生平均每日暴露劑量(Life-time Average Daily Dose, LADD)推估17 第4章結果與討論22 4-1暴露腔穩定性與均勻性測試評估22 4-2 芳香蠟燭燃燒在不同空氣置換率下之粒徑分布、個數濃度與表面積濃度推估22 4-2-1不同薰衣草精油添加比例之芳香蠟燭燃燒在不同空氣置換率下,奈米微粒粒徑分布特徵22 4-2-2相同薰衣草精油添加比例之芳香蠟燭燃燒在不同空氣置換率下,奈米微粒總個數濃度與總表面積濃度之分佈特徵23 4-2-3不同薰衣草精油添加比例之芳香蠟燭燃燒在相同空氣置換率下,奈米微粒總個數濃度與總表面積濃度之分佈特徵24 4-3 奈米微粒沉積於呼吸道不同區域之個數濃度與表面積濃度推估25 4-4芳香蠟燭之排放率與排放係數26 4-5使用芳香蠟燭呼吸道之終生平均每日暴露劑量(Life-time Average Daily Dose, LADD)推估27 第5章 結論與建議40 5-1結論40 5-2建議41 第6章 參考文獻42

    Anderson PJ, Wilson JD, Hiller FC. 1990. Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. Chest 97(5): 1115-1120.
    Anthony H, Matthew B. 2005. Characterization of candle flames. Journal of Fire Potection Engineering 15: 265-285.
    Association NC. 1999. 1999-2000 Directory of Members. National Candle Association, Washington, DC.
    de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. 2005. Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model. Toxicol Sci 87(2): 409-418.
    Demou E, Hellweg S, Wilson MP, Hammond SK, McKone TE. 2009. Evaluating indoor exposure modeling alternatives for LCA: A case study in the vehicle repair Industry. Environ Sci Technol 43(15): 5804-5810.
    Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, et al. 1993. An Association between Air Pollution and Mortality in Six U.S. Cities. New England Journal of Medicine 329(24): 1753-1759.
    Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, et al. 2002. The pulmonary toxicology of ultrafine particles. J Aerosol Med 15(2): 213-220.
    Fissan H, Trampe A, Neunman S, Pui DYH, Shin WG. 2007. Rationale and principle of an instrument measuring lung deposition area. Journal of Nanoparticle Research. 9:53-59.
    Fine PM, Cass GR, Simoneit BRT. 1999. Characterization of fine particle emissions from burning church candles. Environ Sci Technol 33(14): 2352-2362.
    Gehin E, Ramalho O, Kirchner S. 2008. Size distribution and emission rate measurement of fine and ultrafine particle from indoor human activities. Atmos Environ 42(35): 8341-8352.
    Gelosa S DM, Sliepcevich A, Gelosa D, Rota NR,. 2007. Charaterzation of pollutants emissions from burning candles. 30th Meeting of the Italian Section of the Combustion Institute.
    Hsiao TC, Chen DR. 2009. Development of mini-cyclones as the size-selective inlet of miniature particle detectors. Journal of Aerosol Science. 40(6): 481-491.
    Hussein T, Glytsos T, Ondrácek J, Dohányosová P, Zdímal V, Hämeri K, et al. 2006. Particle size characterization and emission rates during indoor activities in a house. Atmos Environ 40(23): 4285-4307.
    ICRP ICoRP. 1994. Human respiratory tract model for radiological protection, Publication 66, Annals of ICRP. Oxford, Pergamon: London, UK.
    Jaques PA, Kim CS. 2000. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal Toxicol 12(8): 715-731.
    Johnson T. 2002. A guide to selected algorithms, distributions, and databases used in exposure models developed by the office of air quality planning and standard.
    Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11(3): 231-252.
    Klot Sv, Wölke G, Tuch T, Heinrich J, Dockery DW, Schwartz J, et al. 2002. Increased asthma medication use in association with ambient fine and ultrafine particles. European Respiratory Journal 20(3): 691-702.
    Kreyling WG, Semmler M, Moller W. 2004. Dosimetry and toxicology of ultrafine particles. J Aerosol Med 17(2): 140-152.
    Lee SC, Wang B. 2006. Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmos Environ 40(12): 2128-2138.
    Li L, Chen DR. 2009. A miniature disk electrostatic aerosol classifier (mini-disk EAC) for personal nanoparticle sizers. Journal of Aerosol Science. 40(11): 982-992.
    Li L, Chen DR. 2009. Evaluation of an electrical aerosol detector (EAD) for the aerosol integral parameter measurement. Journal of Electrostatics. 67(5): 765-773.
    Li L, Chen DR. Tsai PJ. 2009. Use of An Electrical Aerosol Detector (EAD) for Nanoparticle Size Distribution Measurement. Journal of Nanoparticle Research. 11:111-120.
    Li W, Hopke PK. 1993. Initial Size Distributions and Hygroscopicity of Indoor Combustion Aerosol Particles. Aerosol Science and Technology 19(3): 305-316.
    Li W HP. 1993. Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Science and Technology 19(3): 305-316.
    Matthäi M, Petereit N. 2004. The candle quality. SOFW Journal 130(10).
    Matson U. 2005. Indoor and outdoor concentrations of ultrafine particles in some Scandinavian rural and urban areas. Sci Total Environ 343(1-3): 169-176.
    Michael M, Norbert P. 2007. The quality candle.
    Nemmar A, Hamoir J, Nemery B, Gustin P. 2005. Evaluation of particle translocation across the alveolo-capillary barrier in isolated perfused rabbit lung model. Toxicology 208(1): 105-113.
    Oberdörster G. 2001. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74(1): 1-8.
    Orecchio S. 2011. Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmos Environ 45(10): 1888-1895.
    Ott WR, Siegmann HC. 2006. Using multiple continuous fine particle monitors to characterize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in-transit settings. Atmos Environ 40(5): 821-843.
    Pagels J, Wierbicka A, Nilsson E, Isaxon C, Dahl A, Gudmundsson A, et al. 2009. Chemical composition and mass emission factors of candle smoke particles. J Aerosol Sci 40(3): 193-208.
    Pekkanen J, Peters A, Hoek G, Tiittanen P, Brunekreef B, de Hartog J, et al. 2002. Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) study. Circulation 106(8): 933-938.
    Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J. 2001. Ultrafine particles in urban air and respiratory health among adult asthmatics. European Respiratory Journal 17(3): 428-435.
    Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. 1997. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155(4): 1376-1383.
    Poling BE RR, Prausnitz JM. 2001. The properties of gases and liquids. 5th edition, McGraw-Hill Inc.
    Pope CA, 3rd, Hill RW, Villegas GM. 1999. Particulate air pollution and daily mortality on Utah's Wasatch Front. Environ Health Perspect 107(7): 567-573.
    Qi C, Chen DR. 2008. Performance study of a unipolar aerosol mini-charger for a personal nanoparticle sizer. Journal of Aerosol Science. 39(5): 450-459.
    Qi C, Chen DR, and Greenberg P. 2008a. Fundamental Study of a Miniaturized Mini-disk Electrostatic Aerosol Precipitator for a Personal Nanoparticle Sizer, Aerosol Science and Technology. 42(7):505-512.
    Ramachandran G, Paulsen D, Watts W, Kittelson D. 2005. Mass, surface area and number metrics in diesel occupational exposure assessment. J Environ Monitor 7(7): 728-735.
    Sun Z, Huang Z, Wang JS. 2006. Studies on the size distribution, number and mass emission factors of candle particles characterized by modes of burning. J Aerosol Sci 37(11): 1484-1496.
    Soto KF, Garza KM, et al. 2008. "Direct contact cytotoxicity assays for filter-collected, carbonaceous (soot) nanoparticulate material and observations of lung cell response. Atmospheric Environment 42(9): 1970-1982.
    Savolainen K, Alenius H, et al. 2010. "Risk assessment of engineered nanomaterials and nanotechnologies--A review. Toxicology 269(2-3): 92-104.
    Vesterdal KL, Folkmann KJ, Jacobsen KJ, et al. 2010. Particle and Fibre Toxicology 7:33.
    Van Alphen M. 1999. Emission testing and inhalational exposure-based risk assessment for candles having Pb metal wick cores. Sci Total Environ 244: 53-65.
    Woo KS, Chen DR, Pui DYH, Wilson WE. 2001. Use of continuous measurements of integral aerosol parameters to estimate particle surface area. J Aerosol Sci. 34:57-65.
    Wang YF, Tsai PJ, Chen CW, Chen DR, Hsu DJ. 2010. Using a modified electrical aerosol detector (MEAD) to predict nanoparticle exposures to different regions of the respiratory tract for workers in a carbon black manufacturing industry. Environmental Science and Technology. 44: 6767-6774.
    W S. 1994. Personal Communication. Association of Candle Manufacturers, Frankfurt, Germany.
    Zai S, Zhen H, Jia-song W. 2006. Studies on the size distribution, number and mass emission factors of candle particles characterized by modes of burning. J Aerosol Sci 37(11): 1484-1496.
    趙崇仁,2003。薰香精油對室內空氣品質的影響,國立成功大學環境醫學研究所碩士論文。
    龔大瑋,2007。精油薰燒逸散物及其潛在的氣狀及粒狀二次汙染物之定性定量分析研 究,國立成功大學環境醫學研究所碩士論文。

    下載圖示 校內:2012-08-01公開
    校外:2012-08-01公開
    QR CODE