簡易檢索 / 詳目顯示

研究生: 石育政
Shih, Yu-Cheng
論文名稱: 燃油添加劑之燃燒應用與液滴-液柱碰撞分析
Combustion Applications of Fuel Oil Additives and Liquid Drop-Jet Collisions
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 137
中文關鍵詞: 液滴表面交互作用添加劑
外文關鍵詞: drop-jet surface interaction, additive
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先利用一適用多種燃料且具多功能之工業燃燒模擬設施,針對含不同添加劑的燃料油,進行加熱特性與污染排放之分析。研究中所使用之添加劑燃料油共分為三大類,第一類為添加輕油之基礎重油,此類燃料油燃燒效果較好,且SOX與NOX皆有降低排放的特性。第二類為含水乳化之基礎重油,此類燃料油其加熱特性皆有下降的趨勢。對於SOX的排放有減量的效果;而NOX的排放減量,則需添加水量達10%以上才有顯著的效果,否則有可能會提高NOX的生成。第三類為含少量添加劑之基礎重油,可發現此類添加劑具有助燃的效果。少數添加劑對於NOX有改善排放之效果。對於SOX由於添加量極少故無明顯改善排放之效果。

    在液滴與液柱碰撞研究中,利用壓電液滴產生器產生一串相同直徑的水滴,與等直徑之噴流水柱進行碰撞研究,探討水滴與等直徑水柱在不同軸向韋伯數、不同橫向韋伯數與不同撞擊參數下之碰撞行為。研究發現到四種碰撞現象:截段黏合現象,此類現象發生於橫向韋伯數大,軸向韋伯數小時。貼附黏合現象,此類現象發生於橫向韋伯數較小,軸向韋伯數較大時。拉伸分離現象,此類現象發生於撞擊參數較高的情形下液滴與液柱擦撞所產生的現象。反彈分離現象,此類現象發生於,橫向韋伯數較小,某一特定液柱軸向韋伯數值正撞時。

    A multi-functional multi-fuel industrial furnace simulator was utilized to study the burning characteristics and pollutant emissions of fuel oils containing various additives. Three specimens were tested. The first was light-oil-added fuel oil, which burned well and could reduce the emission of SOX and NOX. The second was water-emulsified fuel oil, which decreased the burning intensity and reduced SOX emission. For NOX reduction, the amount of water added had to be over 10%. The third was fuel oil with trace additives. Some additives could intensify burning. Some showed reduction in NOX. But none of them changed SOX emission.

    For drop-jet collision experiment, we utilized a piezo-electric drop generator to produce a stream of uniform droplets, which was directed to collide with a liquid jet of the same diameter as the drop. The dimensionless parameters governing the collision phenomena are the jet-axial Weber number, the jet-cross-sectional Weber number, and the impact parameter. We have discovered four types of collision outcome: (a) Segmenting coalescence-this happens at high jet-cross-sectional Weber number, low jet-axial Weber number. (b) Clinging coalescence-this happens at low jet-cross-sectional Weber number, high jet-axial Weber situation. (c) Stretching separation-this happens at high impact parameters. (d) Reflecting separation-only occurs at low impact parameters and a specific jet-axial Weber number range.

    總目錄 I 表目錄 IV 圖目錄 V 符號說明 IX 第一部份 燃油添加劑之燃燒應用 一、前言 1 1-1 研究背景 1 1-2 燃料油的物化性 2 1-3 氮氧化物的形成 4 1-4 氮氧化物控制技術 5 1-5 燃料前處理控制技術-使用燃料添加劑 6 1-5-1 水乳化燃料 8 1-5-2 水乳化燃料對碳微粒的影響 8 1-5-3 水乳化燃料對溫度及火焰長度的影響 10 1-5-4 水乳化燃料對NOX的影響 10 1-5-5 水乳化燃料其他研究 11 1-5-6 燃料添加劑之其他研究 11 1-6 研究目的 12 二、實驗設備與儀器 13 2-1 工業燃燒模擬設施本體 13 2-2 燃料與空氣供應系統 15 2-3 燃燒器系統 16 2-4 安全及控制系統 16 2-5 數據分析系統 17 三、研究方法與步驟 19 3-1 工業燃燒模擬設施之預熱升溫 19 3-1-1 第一時期預熱升溫過程 19 3-1-2 第二時期預熱升溫過程 21 3-1-3 第三時期預熱升溫過程 22 3-2 燃料油之燃燒調整實驗 23 3-3 燃料油之燃燒性能實驗 25 四、結果與討論 26 4-1 添加輕油之基礎重油 26 4-1-1 油品物化性分析 26 4-1-2 燃燒調整結果 27 4-1-3 燃燒性能分析 29 4-2 含水乳化之基礎重油 33 4-2-1 油品物化性分析 34 4-2-2 燃燒調整結果 35 4-2-3 燃燒性能分析 37 4-3 含添加劑之基礎重油 45 4-3-1 油品物化性分析 45 4-3-2 燃燒調整結果 46 4-3-3 燃燒性能分析 48 五、結論 56 六、參考文獻 58 七、表 61 八、圖 66 第二部份 液滴-液柱碰撞分析 一、前言 101 1-1 液滴與液滴之碰撞現象 101 1-2 液滴與液體表面之碰撞現象 104 1-3 液滴與固體表面之碰撞現象 105 1-4 兩噴流液柱之碰撞現象 106 1-5 實驗研究目的 106 二、實驗設備與實驗步驟 107 2-1 實驗設備 107 2-1-1 供水系統 107 2-1-2 碰撞實驗系統 108 2-1-3 影像處理系統 110 2-2 實驗步驟 111 三、數學模型與量測方法 114 3-1 數學模型 114 3-2 無因次參數 114 3-3 量測方法與計算 115 四、結果與討論 117 4-1 液滴與液柱碰撞現象定義 117 4-2 橫向韋伯數較大之碰撞現象 118 4-3 橫向韋伯數較小之碰撞現象 120 五、結論 123 六、參考文獻 124 七、圖 127

    第一部份 燃油添加劑之燃燒應用

    1. 「空氣污染物排放防制技術輔導暨示範計畫-固定污染源NOX減量最佳可行控制技術輔
    導」成果報告,EPA-86-FA11-09-84,行政院環保署,民國八十六年六月。
    2. 「高屏空氣流通區(高雄縣、屏東縣及台南縣)固定污染源空氣污染物排放量削減計畫」期
    末報告,台灣省政府環境保護處南區環保中心,民國八十七年一月。
    3. Glassman, I, Combustion, 3rd Ed., Academic Press, 1996.
    4. Zeldovich, Y. B., Acta Pyhsecochem., USSR 21, 577, 1946.
    5. Fenimore, C. P., 13th Symposium on Combustion, p.373, The combustion
    Institute, Pittsburgh, Pennsylvania, 1971.
    6. Miller, J. A., and Bowman, C. T., Progress Energy Combustion Science, 15,
    p.287, 1989.
    7. 蔡健忠,「鍋爐低NOX燃燒技術」,燃燒及污染防治技術講習會專輯,中華民國燃燒學
    會,民國八十四年三月。
    8. U. S. EPA, “Sourcebook: NOX Control Technology Data,”Radian Corp., Research
    Triangle Park, NC, EPA-600/2-91-029, July 1991.
    9. U. S. EPA, “Evaluation and Costing of NOX Controls for Existing Utility
    Boilers in the NESCAUM Region,”Acurex Environmental Corp., Mountain View,
    CA, EPA-453/R-92-010, Dec. 1992.
    10. Sjogren, A., 16th Symposium on Combustion, p.297, The Combustion Institute,
    Pittsburgh, Pennsylvania, 1977.
    11. Ivanov, V. M. and Nefedov, P. I., Trudy Instituta Goryachikh Iskopayemykh 19,
    1962, Russian. See also NASA TTF-258, January, 1965.
    12. Gollahalli, S. R., Nasrullah, M. K., and Bhashi, J. H., “Combustion and
    Emission Characteristics of Burning Sprays of a Residual Oil and Its
    Emulsions with Water.”Combustion and Flame, 55, p.93, 1984.
    13. Marco Mattiello, Lucia Cosmai and Luigi Pistone, “Experimental Evidence for
    Microexplosions in Water/Fuel Oil Emulsion Flame Inferred by Laser Light
    Scattering.”Twenty-Fourth Symposium on Combustion/ The Combustion Institute,
    p.1573, 1992.
    14. Ballester, J. M., Fueyo, N., and Dopazo, C., “Combustion Characteristics of
    Heavy Oil-Water Emulsions.”Fuel, 75, No.6, p.695, 1996.
    15. Jahani, H., and Gollahalli, S. R., “Characteristics of Burning Jet A Fuel
    and Jet A Fuel-Water Emulsion Sprays.”Combustion and Flame, 37, p.145, 1980.
    16. Dryer, F. L., “Water Addition to Practical Combustion Systems-Concepts and
    Applications.”16th Symposium on Combustion, p.279, The Combustion Institute,
    Pittsburgh, Pennsylvania, 1977.
    17. Law, C. K., Lee, C. H., and Srinivasan, N., “Combustion Characteristics of
    Water-in-Oil Emulsion Droplets.”Combustion and Flame, 37, p.125, 1980.
    18. Wang, C. H., and Chen, J. T., “An Experimental Investigation of the Burning
    Characteristics of Water-Oil Emulsions.”Int. Comm. Heat Mass Transfer, 23,
    No.6, p.823, 1996.
    19. El-M. El-Malki, van Santen, R. A., and Sachtler W. M. H.,“Active Sites in
    Fe/MFI Catalysts for NOX Reduction and Oscillating N2O
    Decomposition.”Journal of Catalyses, 196, p.212, 2000.
    20. Jelles, S. J., Krul, R. R., Makkee, M., and Moulijn J. A.,“The influence of
    NOX on the oxidation of metal activated diesel soot.”Catalysis Today, 53,
    p.623, 1999.

    第二部份 液滴-液柱碰撞分析

    1. Jayaratne, O. W. and Mason, B. J.,“The coalescence and bouncing of water
    droplets at an air/water interface.”Proceedings of the Royal Society
    (London), A280, p.545, 1964.
    2. Whelpdale, D. M. and List, R.,“The coalescence process in raindrop
    growth.”Journal of Geophysics Research, 76, p.2836, 1971.
    3. Woods, J. D. and Mason, B. H.,“The wake capture of water drops in
    air.”Quarterly Journal of the Royal Meteorological Society, 91, p.35, 1965.
    4. Montgomery, D. N.,“Collision and coalescence of water droplets.”Journal of
    Atmospheric Science, 28, p.292, 1971.
    5. Spengler, J. D. and Gokhale, N. R.,“Droplet impactions.”Journal of Applied
    Meteorology, 12, p.316, 1973.
    6. Adam, J. R., Lindblad, N. R. and Hendricks, C. D.,“The collision,
    coalescence and disruption of water droplets.”Journal of Applied Physics,
    39(11), p.5173, 1968.
    7. Ashgriz, N. and Poo, J. Y.,“Coalescence and separation in binary collisions
    of liquid droplets.”Journal of Fluid Mechanics, 221, p.183, 1990.
    8. Faeth, G. M.,“Current status of droplet and liquid combustion.”Progress in
    Energy Combustion Science, 3, p.191, 1977.
    9. O’Rourke, P. J. and Bracco, F. V.,“Modeling of droplet interactions in
    thick sprays and a comparison with experiments.”Stratified Charge Automated
    Engineering Conference, p.101, Institute of mechanical Engineering, ISBN
    0-85298-4693.
    10. Brenn, G. and Frohn, A.,“Collision and merging of two equal droplets of
    propanol.”Experiments in Fluids, 7, p.441, 1989.
    11. Ashgriz, N. and Givi, P.,“Coalescence efficiencies of fuel droplets in
    binary collisions.”International Communication of Heat and Mass Transfer,
    16, p.11, 1989.
    12. Jiang, Y. J., Umemura, A. and Law, C. K.,“An experimental investigation on
    the collision behavior of hydrocarbon droplets.”Journal of Fluid Mechanics,
    234, p.171, 1992.
    13. Qian, J. and Law, C. K.,“Regimes of coalescence and separation in droplet
    collision.”Journal of Fluid Mechanics, 331, p.59, 1997.
    14. Orme, M.,“Experiments on droplet collisions, bounce, coalescence and
    disruption.”Progress in Energy Combustion Science, 23, p.65, 1997.
    15. Cai, Y. K.,“Phenomena of a liquid drop falling to a liquid
    surface.”Experiments in Fluids, 7, p.388, 1989.
    16. Rein, M.,“The transitional regime between coalescing and splashing
    drops.”Journal of Fluid Mechanics, 306, p.145, 1996.
    17. Manzello, S. L. and Yang, J. C.,“An experimental study of a water droplet
    impinging on a liquid surface.”Experiments in Fluids, 32, p.580, 2002.
    18. Wang, A. B. and Chen, C. C.,“Splashing impact of a single drop onto very
    thin liquid films.”Physics of Fluids, 12, No.9, p.2155, 2000.
    19. Ko, Y. S. and Chung, S. H.,“An experiment on the breakup of impinging
    droplets on a hot surface.”Experiments in Fluids, 21, p.118, 1996.
    20. Kang, B. S. and Lee, D. H.,“On the dynamic behavior of a liquid droplet
    impacting upon an inclined heated surface.”Experiments in Fluids, 29, p.380,
    2000.
    21. Manzello, S. L. and Yang, J. C.,“An experimental study of high Weber number
    impact of methoxy-nonafluorobutane C4F9OCH3 (HFE-7100) and n-heptane droplets
    on a heated solid surface.”International Journal of Heat and Mass Transfer,
    45, p.3961, 2002.
    22. Ashgriz, N., Brocklehurst, W. and Talley, D.,“Mixing Mechanisms in a Pair of
    Impinging Jets.”Journal of propulsion and power, 17, No.3, p.736, 2001.

    下載圖示 校內:2013-06-19公開
    校外:2013-06-19公開
    QR CODE