| 研究生: |
蔡侑廷 Tsai, You-Ting |
|---|---|
| 論文名稱: |
氧化鋅奈米結構之感測器元件應用於環境監測及人體健康管理 Sensors based on Zinc Oxide Nanostructures for the Environment and Health Monitoring |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 共同指導教授: |
姬梁文
Ji, Liang-Wen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 氧化鋅 、奈米結構 、感測器 |
| 外文關鍵詞: | ZnO, Nanostructures, Sensors |
| 相關次數: | 點閱:95 下載:33 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力研製多種不同樣貌的氧化鋅奈米結構及其材料特性分析,利用低成本且易操作的水熱法成功生長金屬氧化物,並且摻雜不同的金屬離子於材料之中,優化感測元件的性能。本研究製作的感測器元件整合了微機電系統技術,使其實用性大幅提升。
我們使用高密度多孔狀的氧化鋅奈米片狀結構,成長於鋁薄膜上並整合微機電加熱技術製作臭氧氣體感測器。藉由改變鋁薄膜的厚度使得新穎的氧化鋅奈米結構改變高度,而臭氧感測器於300°C操作溫度下,響應值可達96.1%,並且在150°C仍有53.4%的表現。
本論文的第二部分研究則是,我們以銀摻雜氧化鋅奈米花結構作為一氧化氮氣體感測器元件,以紫外光優化其性能,得到了成功摻雜銀離子於氧化鋅奈米結構之內並改變其樣貌及特性的結論。
另考量實際應用層面,應用於大氣環境及人體時,感測器將會面臨到大量的水分子干擾,基於上述考量,我們利用氧化鋁摻雜氧化鋅奈米花狀結構並與金奈離子結合後應用於乙醇感測器,此感測器在不同相對濕度下皆有良好的精準度及響應。
論文最後一部分的研究結果顯示,將鋁摻雜氧化鋅奈米片狀結構的pH感測器,整合微流道系統,將能優化性能與提升實用性。此pH感測器有別於傳統的感測器,僅需極少量待測液體樣本,對於靈敏度、長時間使用性能和量測範圍等各方面向皆有卓越之表現,更符合實際的生物環境應用。
In the dissertation, various sensors based on the different morphology and properties of the Zinc Oxide (ZnO) nanostructure have been synthesized and discussed. The metal oxide has been fabricated by the low-cost and convenient hydrothermal method and optimized the sensing properties by metal ion doping. Furthermore, the MEMs technology has been integrated into the sensors, leading the application much more practical.
Firstly, an ozone (O3) sensor based on high-density porous zinc oxide (ZnO) nanosheets (NSs) has been synthesized on an aluminum (Al) film, and the sensor integrates with microelectromechanical systems (MEMS) technology. The height of this new ZnO nanostructure can be controlled by using different thicknesses of an Al seed layer ranging from 25 nm to 100 nm. This work resulted in a low temperature, hydrothermally grown novel porous ZnO NSs ozone gas sensor that measured O3 responses of 96.1% at 300 °C and 53.4% at 150°C.
Secondly, an ultraviolet-enhanced (UV-enhanced) nitric oxide (NO) sensor based on silver-doped zinc oxide (ZnO) nanoflowers is developed using a low-cost hydrothermal method. The results indicate that silver (Ag) ions were doped into the ZnO nanostructure successfully, thus changing the morphology.
Thirdly, Aluminum oxide-doped (Al2O3-doped) cactus-like ZnO nanoflowers with gold (Au) nanoparticles (NP) are grown on an aluminum (Al) substrate using a hydrothermal method to detect ethanol sensing in atmospheres with various degrees of relative humidity (RH). The novel cactus-like ZnO nanoflowers are sufficiently sensitive to ethanol in an atmosphere with high humidity to allow effective and accurate analysis of the amount of alcohol in breath.
Finally, a flexible and stable pH sensor based on aluminum-doped zinc oxide nanosheet (Al-doped ZnO NS) was developed by a low-cost hydrothermal method. The results obtained from this study indicated that Al ions could be doped successfully into the ZnO nanostructure, which could change the morphology and improve the pH-sensing properties. The benefits of Al-doped ZnO nanosheet, pH sensor were recognized as high sensitivity, good long-term usage, good flexible property and requirement of small amount of test liquid, which could make the sensors as viable candidates for practical applications.
[1] R. P. Feynman, "Forces in molecules," Phys. Rev., vol. 56, no. 4, p. 340, 1939. doi:10.1103/PhysRev.56.340
[2] R. P. Feynman, "Very high-energy collisions of hadrons," Phys. Rev. Lett., vol. 23, no. 24, p. 1415, 1969. doi:10.1103/PhysRevLett.23.1415
[3] R. P. Feynman and M. Gell-Mann, "Theory of the Fermi interaction," Phys. Rev., vol. 109, no. 1, p. 193, 1958.
[4] D. R. Paul and L. M. Robeson, "Polymer nanotechnology: nanocomposites," Polymer, vol. 49, no. 15, pp. 3187-3204, 2008. doi:10.1016/j.polymer.2008.04.017
[5] E. G. Moczydlowski, "Intra-membrane Molecular Interactions of K+Channel Proteins: Application to Problems in Biodefense and Bioenergy," San. Nat. Lab., vol. 23, no. 7, pp. 807-820, 2011.
[6] R. Liu, J. Duay, and S. Lee, "Heterogeneous nanostructured electrode materials for electrochemical energy storage," Chem. Commun., vol. 47, no. 5, pp. 1384-1404, 2011. doi:10.1039/C0CC03158E
[7] C. R. Martin, "Nanomaterials: a membrane-based synthetic approach," Science, vol. 266, no. 5193, pp. 1961-1966, 1994. doi:10.1126/science.266.5193.1961
[8] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, "Fabrication of a high‐brightness blue‐light‐emitting diode using a ZnO‐nanowire array grown on p‐GaN thin film," Adv. Mater., vol. 21, no. 27, pp. 2767-2770, 2009. doi:10.1002/adma.200802686
[9] M. White, D. Olson, S. Shaheen, N. Kopidakis, and D. Ginley, "Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer," Appl. Phys. Lett., vol. 89, no. 14, p. 143517, 2006. doi:10.1063/1.2359579
[10] F. Fleischhaker, V. Wloka, and I. Hennig, "ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates," J. Mater. Chem., vol. 20, no. 32, pp. 6622-6625, 2010. doi:10.1039/C0JM01477J
[11] Y. Huang and H. Zeng, "Amorphous ZnO based resistive random access memory," RSC Adv., vol. 6, no. 22, pp. 17867-17872, 2016. doi:10.1039/C5RA22728C
[12] L. J. Bie, X. N. Yan, J. Yin, Y. Q. Duan, and Z. H. Yuan, "Nanopillar ZnO gas sensor for hydrogen and ethanol," Sens. Actuators B, vol. 126, no. 2, pp. 604-608, 2007. doi:10.1016/j.snb.2007.04.011
[13] K. Liu, M. Sakurai, and M. Aono, "ZnO-based ultraviolet photodetectors," Sensors, vol. 10, no. 9, pp. 8604-8634, 2010. doi:10.3390/s100908604
[14] E. Bachari, G. Baud, S. Amor, and M. Jacquet, "Structural and optical properties of sputtered ZnO films," Thin Solid Films, vol. 348, no. 1-2, pp. 165-172, 1999. doi:10.1016/S0040-6090(99)00060-7
[15] B. Yao, Y. Chan, and N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation," Appl. Phys. Lett., vol. 81, no. 4, pp. 757-759, 2002. doi:10.1063/1.1495878
[16] M. Kamalasanan and S. Chandra, "Sol-gel synthesis of ZnO thin films," Thin Solid Films, vol. 288, no. 1-2, pp. 112-115, 1996. doi:10.1016/S0040-6090(96)08864-5
[17] J. Hao, L. Ji, K. Wu, and N. Yang, "Electrochemistry of ZnO@ reduced graphene oxides," Carbon, vol. 130, pp. 480-486, 2018. doi:10.1016/j.carbon.2018.01.018
[18] S. T. Tan and W. J. Fan, "Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition," J. Appl. Phys., vol. 98, no. 1, p. 013505, 2005. doi:10.1063/1.1940137
[19] A. Radzimska and T. Jesionowski, "Zinc oxide—from synthesis to application: a review," Materials, vol. 7, no. 4, pp. 2833-2881, 2014. doi:10.3390/ma7042833
[20] P. Yang and H. J. Choi,, "Controlled growth of ZnO nanowires and their optical properties," Adv. Funct. Mater., vol. 12, no. 5, pp. 323-331, 2002. doi:1616-301X/02/0505-0323 $ 17.50+.50/0
[21] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, "ZnO nanowire field-effect transistor and oxygen sensing property," Appl. Phys. Lett., vol. 85, no. 24, pp. 5923-5925, 2004. doi:10.1063/1.1836870
[22] S. Liu, C. Li, J. Yu, and Q. J. Xiang, "Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers," CrystEngComm, vol. 13, no. 7, pp. 2533-2541, 2011. doi:10.1039/C0CE00295J
[23] W. Park, G. C. Yi, M. Kim, and S. Pennycook, "ZnO nanoneedles grown vertically on Si substrates by non‐catalytic vapor‐phase epitaxy," Adv. Mater., vol. 14, no. 24, pp. 1841-1843, 2002. doi:10.1002/adma.200290015
[24] R. Wahab, and H. ShikShin, "Low temperature solution synthesis and characterization of ZnO nano-flowers," Mater Res. Bul., vol. 42, no. 9, pp. 1640-1648, 2007. doi:10.1016/j.materresbull.2006.11.035
[25] V. Jelicic, M. Magno, D. Brunelli, G. Paci, and L. Benini, "Context-adaptive multimodal wireless sensor network for energy-efficient gas monitoring," IEEE Sens. J, vol. 13, no. 1, pp. 328-338, 2012. doi:10.1109/JSEN.2012.2215733
[26] M. Fleischer, H. Meixner, and A. Chemical, "Sensing reducing gases at high temperatures using long-term stable Ga2O3 thin films," Sens. Actuators B, vol. 6, no. 1-3, pp. 257-261, 1992. doi:10.1016/0925-4005(92)80065-6
[27] J. Brunet, A. Pauly, C. Varenne, and B. Lauron, "On-board phthalocyanine gas sensor microsystem dedicated to the monitoring of oxidizing gases level in passenger compartments," Sens. Actuators B, vol. 130, no. 2, pp. 908-916, 2008. doi:10.1016/j.snb.2007.10.074
[28] P. Althainz and J. Goschnick, "Sensor for reducing or oxidizing gases," U. S. Patent, 1998.
[29] A. Fog, and R. Buck, "Electronic semiconducting oxides as pH sensors," Sens. Actuators, vol. 5, no. 2, pp. 137-146, 1984. doi:10.1016/0250-6874(84)80004-9
[30] S. Głab, A. Hulanicki, G. Edwall, and F. Ingman, "Metal-metal oxide and metal oxide electrodes as pH sensors," Cri. Rev. Anal. Chem., vol. 21, no. 1, pp. 29-47, 1989. doi:10.1080/10408348908048815
[31] P. Kurzweil, "Metal oxides and ion-exchanging surfaces as pH sensors in liquids: State-of-the-art and outlook," Sensors, vol. 9, no. 6, pp. 4955-4985, 2009. doi:10.3390/s90604955
[32] G. Edwall, and B. Engineering, "Improved antimony-antimony (III) oxide pH electrodes," Med. Biol. Eng. Comput., vol. 16, no. 6, pp. 661-669, 1978. doi:10.1007/BF02442445
[33] B. Horton, S. Schweitzer, A. DeRouin, and K. Ong, "A varactor-based, inductively coupled wireless pH sensor," IEEE vol. 11, no. 4, pp. 1061-1066, 2010. doi:10.1109/JSEN.2010.2062503
[34] Y. Xia and H. Yan, "One‐dimensional nanostructures: synthesis, characterization, and applications," Adv. Mater., vol. 15, no. 5, pp. 353-389, 2003. doi:10.1002/adma.200390087
[35] N. Kovtyukhova and T. Mallouk, "Nanowires as building blocks for self‐assembling logic and memory circuits," Chem. Eur. J, vol. 8, no. 19, pp. 4354-4363, 2002. doi:0947-6539/02/0819-4354 $ 20.00+.50/0
[36] Y. Liu and C. Wang, "Architecturing hierarchical function layers on self-assembled viral templates as 3D nano-array electrodes for integrated Li-ion microbatteries," Nano Lett., vol. 13, no. 1, pp. 293-300, 2013. doi:10.1021/nl304104q
[37] A. Morales and C. Lieber, " A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science, vol. 123, pp. 3165-3166, 2001. doi:10.1126/science.279.5348.208
[38] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. J. Yang, "Catalytic growth of zinc oxide nanowires by vapor transport," Adv. Meter., vol. 13, no. 2, pp. 113-116, 2001. doi:10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
[39] A. Umar, Y. Im, and Y. Hahn, "Evolution of ZnO nanostructures on silicon substrate by vapor-solid mechanism: Structural and optical properties," J. Elec. Mater., vol. 35, no. 4, pp. 758-765, 2006.
[40] A. Umar, S. Kim, Y. S. Lee, K. Nahm, and Y. Hahn, "Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: structural and optical properties," J. Crys. Growth, vol. 282, no. 1-2, pp. 131-136, 2005. doi:10.1016/j.jcrysgro.2005.04.095
[41] X. Zhao and Q.Tang, "Low-temperature, catalyst-free vapor–solid growth of ultralong ZnO nanowires," Mater. Chem. Phys., vol. 136, no. 2-3, pp. 455-459, 2012. doi:10.1016/j.matchemphys.2012.07.008
[42] H. J. Egelhaaf and D. Oelkrug, "Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO," J. Crys. Growth, vol. 161, no. 1-4, pp. 190-194, 1996. doi:10.1016/0022-0248(95)00634-6
[43] W. I. Park, J. S. Kim, and H. J. Lee, "Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors," Appl. Phys. Lett., vol. 85, no. 21, pp. 5052-5054, 2004. doi:10.1063/1.1821648
[44] P. Mitra, A. Chatterjee, and H. Maiti, "ZnO thin film sensor," Mater. Lett.,vol. 35, no. 1-2, pp. 33-38, 1998. doi:10.1016/S0167-577X(97)00215-2
[45] M. S. Cao and J. Yuan, "Electromagnetic response and energy conversion for functions and devices in low‐dimensional materials," Adv. Funct. Mater., vol. 29, no. 25, p. 1807398, 2019. doi:10.1002/adfm.201807398
[46] T. Wang and G. Lua, "Flower-like ZnO hollow microspheres loaded with CdO nanoparticles as high performance sensing material for gas sensors," Sens. Actuators B, vol. 250, pp. 692-702, 2017. doi:10.1016/j.snb.2017.04.099
[47] S. Chaudhary, A. Umar, K. Bhasin, and S. Baskoutas, "Chemical sensing applications of ZnO nanomaterials," Materials, vol. 11, no. 2, p. 287, 2018. doi:10.3390/ma11020287
[48] T. Wasilewski, J. Gębicki, and W. Kamysz, "Advances in olfaction-inspired biomaterials applied to bioelectronic noses," Sens. Actuators B, vol. 257, pp. 511-537, 2018. doi:10.1016/j.snb.2017.10.086
[49] Q. Zhang and Y. Jiang, "Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles," Sens. Actuators B, vol. 259, pp. 269-281, 2018. doi:10.1016/j.snb.2017.12.052
[50] S. Kundu, R. Majumder, R. Ghosh, and M. Chowdhury, "Superior positive relative humidity sensing properties of porous nanostructured Al: ZnO thin films deposited by jet-atomizer spray pyrolysis technique," J Mater. Sci.: Mater Electron, vol. 30, no. 5, pp. 4618-4625, 2019. doi:10.1007/s10854-019-00754-x
[51] M. Zhang, H. Zhang, L. Li, K. Tuokedaerhan, and Z. Jia, "Er-enhanced humidity sensing performance in black ZnO-based sensor," J. Alloys Compd., vol. 744, pp. 364-369, 2018. doi:10.1016/j.jallcom.2018.02.109
[52] A. Ismail and M.Rusop, "Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol-gel immersion for room temperature, resistive-type humidity sensor applications," Ceram. Int., vol. 42, no. 8, pp. 9785-9795, 2016. doi:10.1016/j.ceramint.2016.03.071
[53] C. L. Hsu, H. H. Li, and T. J. Hsueh, "Water-and humidity-enhanced UV detector by using p-type La-doped ZnO nanowires on flexible polyimide substrate," ACS Appl. Mater. Interfaces, vol. 5, no. 21, pp. 11142-11151, 2013. doi:10.1021/am403364r
[54] J. Yang, G. Liu, J. Lu, Y. Qiu, and S. Yang, "Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate," Appl. phys. lett., vol. 90, no. 10, p. 103109, 2007. doi:10.1063/1.2711532
[55] K. Yadav, S. K. Gahlaut, B. Mehta, and J. Singh, "Photoluminescence based H2 and O2 gas sensing by ZnO nanowires," Appl. Phys. Lett., vol. 108, no. 7, p. 071602, 2016. doi:10.1063/1.4942092
[56] S. Ranwa, P. K. Kulriya, V. K. Sahu, L. Kukreja, and M. Kumar, "Defect-free ZnO nanorods for low temperature hydrogen sensor applications," Appl. Phys. Lett., vol. 105, no. 21, p. 213103, 2014. doi:10.1063/1.4902520
[57] G. Katwal, M. Paulose, I. A. Rusakova, J. E. Martinez, and O. K. Varghese, "Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection," Nano lett., vol. 16, no. 5, pp. 3014-3021, 2016. doi:10.1021/acs.nanolett.5b05280
[58] K. Koike, Y. Mori, S. Sasa, Y. Hirofuji, and M. Yano, "Glucose Sensing by an Enzyme-modified ZnO-based FET," Proc. Eng., vol. 168, pp. 84-88, 2016. doi:10.1016/j.proeng.2016.11.153
[59] R. Borgohain and S. Baruah, "Development and Testing of ZnO Nanorods Based Biosensor on Model Gram-Positive and Gram-Negative Bacteria," IEEE Sensors Journal, vol. 17, no. 9, pp. 2649-2653, 2017. doi:10.1109/JSEN.2017.2682920
[60] M. Ruqeishi, T. Mohiuddin, B. Habsi, F. Ruqeishi, A. Fahdi, and A. Khusaibi, "Piezoelectric nanogenerator based on ZnO nanorods," Arab. J. Chem., 2016. doi:10.1016/j.arabjc.2016.12.010
[61] D. Sarma, T. M. Das, and S. Baruah, "Bandgap Engineering of ZnO Nanostructures through hydrothermal growth," ADBU J. Eng. Tech., vol. 4, 2016.
[62] K. Gurav and J.H.Kim, "Gas sensing properties of hydrothermally grown ZnO nanorods with different aspect ratios," Sens. Actuators B, vol. 190, pp. 439-445, 2014. doi:10.1016/j.snb.2013.08.069
[63] A. Abbasi and J. Sardroodi, "Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices," Appl. Surf. Sci., vol. 436, pp. 27-41, 2018. doi:10.1016/j.apsusc.2017.12.010
[64] A. Abbasi and J. Sardroodi, "Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: Insights from density functional theory calculations," Comp. Theo. Chem., vol. 1095, pp. 15-28, 2016. doi:10.1016/j.comptc.2016.09.011
[65] A. Abbasi and J. J. Sardroodi, "A highly sensitive chemical gas detecting device based on N-doped ZnO as a modified nanostructure media: A DFT+ NBO analysis," Surf. Sci., vol. 668, pp. 150-163, 2018. doi:10.1016/j.susc.2017.10.029
[66] A. Abbasi, J. Sardroodi, A. Ebrahimzadeh, and M. Yaghoobi, "Theoretical study of the structural and electronic properties of novel stanene-based buckled nanotubes and their adsorption behaviors," Appl. Surf. Sci., vol. 435, pp. 733-742, 2018. doi:10.1016/j.apsusc.2017.11.155
[67] X. Liu and S. Wang, "3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors," J. Mater. Chem., vol. 21, no. 2, pp. 349-356, 2011. doi:10.1039/C0JM01800G
[68] S. P. Chang, and H. T. Hsueh, "ZnO-nanowire-based extended-gate field-effect-transistor pH sensors prepared on glass substrate," Sci. Adv. Mater., vol. 4, no. 11, pp. 1174-1178, 2012. doi:10.1166/sam.2012.1410
[69] M. Breedon, J. Yu, W. Wlodarski, and K. Kalantar-zadeh, "ZnO nanostructured arrays grown from aqueous solutions on different substrates," Nanoscience and Nanotechnology, 2008. ICONN 2008. International Conference on, 2008: IEEE, pp. 9-12. doi:10.1109/ICONN.2008.4639232
[70] A. Krauss and M. Ding, "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices," Diam. Relat. Mater., vol. 10, no. 11, pp. 1952-1961, 2001. doi10.1016/S0925-9635(01)00385-5
[71] L. W. Ji, S. M. Peng, J. S. Wu, W. S. Shih, C. Z. Wu, and I. T. Tang, "Effect of seed layer on the growth of well-aligned ZnO nanowires," J. Phys. Chem. Sol., vol. 70, no. 10, pp. 1359-1362, 2009. doi:10.1016/j.jpcs.2009.07.029
[72] K. J. Chen and Y.J.Hsiao, "The crystallization and physical properties of Al-doped ZnO nanoparticles," Appl. surf. sci., vol. 254, no. 18, pp. 5791-5795, 2008. doi:10.1016/j.apsusc.2008.03.080
[73] S. Bernardini and C. Ackermann, "Ozone Sensors Working at Room Temperature Using Zinc Oxide Nanocrystals Annealed at Low Temperature," Proceedings, 2017, vol. 1, no. 4, p. 423. doi:10.3390/proceedings1040423
[74] A. Catto, and L. Silva, "An investigation into the influence of zinc precursor on the microstructural, photoluminescence, and gas-sensing properties of ZnO nanoparticles," J. nano. research, vol. 16, no. 12, p. 2760, 2014. doi:10.1007/s11051-014-2760-0
[75] A. Catto, and L. Silva, "Local Structure and Surface Properties of CoxZn1–xO Thin Films for Ozone Gas Sensing," ACS Appl. Mater. Interfaces, vol. 8, no. 39, pp. 26066-26072, 2016. doi:10.1021/acsami.6b08589
[76] A. Catto, and L. Silva, "An easy method of preparing ozone gas sensors based on ZnO nanorods," RSC Adv., vol. 5, no. 25, pp. 19528-19533, 2015. doi:10.1039/C5RA00581G
[77] F. Güder, and Y. Yang, "Superior Functionality by Design: Selective Ozone Sensing Realized by Rationally Constructed High‐Index ZnO Surfaces," Small, vol. 8, no. 21, pp. 3307-3314, 2012. doi:10.1002/smll.201200841
[78] R. Martins and A. Marques, "Zinc oxide as an ozone sensor," J. Appl. Phys., vol. 96, no. 3, pp. 1398-1408, 2004. doi:10.1063/1.1765864
[79] B. J. Ingram, T. O. Mason, R. Asahi, K. Park, and A. Freeman, "Electronic structure and small polaron hole transport of copper aluminate," Phys. Rev. B, vol. 64, no. 15, p. 155114, 2001. doi:10.1103/PhysRevB.64.155114
[80] L. Pang, and F. Teng, "Promoted Electron Transfer along the Newly Formed Bi-O-S Bond in Bi2O (OH)2SO4," J. Phys. Chem. A, vol. 120, no. 17, pp. 2657-2666, 2016. doi:10.1021/acs.jpca.6b01908
[81] K. Girija, S. Thirumalairajan, V. R. Mastelaro, and D. Mangalaraj, "Catalyst free vapor–solid deposition of morphologically different β-Ga2O3 nanostructure thin films for selective CO gas sensors at low temperature," Anal. Methods, vol. 8, no. 15, pp. 3224-3235, 2016. doi:10.1039/C6AY00391E
[82] H. W. Kim, M. A. Kebede, and H. S. Kim, "Structural, Raman, and photoluminescence characteristics of ZnO nanowires coated with Al-doped ZnO shell layers," Cur. Appl. Phys., vol. 10, no. 1, pp. 60-63, 2010. doi:10.1016/j.cap.2009.04.012
[83] K. Eom, S. Kim, D. Lee, and H. Seo, "Physicochemical interface effect in Cu2O-ZnO heterojunction on photocurrent spectrum," RSC Adv., vol. 5, no. 126, pp. 103803-103810, 2015. doi:10.1039/C5RA17610G
[84] Y. Mun, S. Park, S. An, C. Lee, and H. W. Kim, "NO2 gas sensing properties of Au-functionalized porous ZnO nanosheets enhanced by UV irradiation," Ceram. Int., vol. 39, no. 8, pp. 8615-8622, 2013. doi:10.1016/j.ceramint.2013.04.035
[85] J. Zhang, and S. Wu, "Hierarchically porous ZnO architectures for gas sensor application," Cryst. Growth Des., vol. 9, no. 8, pp. 3532-3537, 2009. doi:10.1021/cg900269a
[86] C. H. Kwak, H. S. Woo, F. Abdel-Hady, A. Wazzan, and J. H. Lee, "Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol," Sens. Actuators B, vol. 223, pp. 527-534, 2016. doi:10.1016/j.snb.2015.09.120
[87] N. Han, J. Ye, A. Yu, and F. Sheu, "Differential mechanisms underlying the modulation of delayed-rectifier K+ channel in mouse neocortical neurons by nitric oxide," J. Neurophys., vol. 95, no. 4, pp. 2167-2178, 2006. doi:10.1152/jn.01185.2004
[88] F. M. Delen, J. M. Sippel, M. L. Osborne, S. Law, N. Thukkani, and W. E. Holden, "Increased exhaled nitric oxide in chronic bronchitis," Chest, vol. 117, no. 3, pp. 695-701, 2000. doi: .1378/chest.117.3.695
[89] J. Morton, R. L. Henry, and P. S. Thomas, "Exhaled breath condensate nitrite/nitrate and pH in relation to pediatric asthma control and exhaled nitric oxide," Ped. Pulmo., vol. 41, no. 10, pp. 929-936, 2006. doi:10.1002/ppul.20469
[90] C. Schultealbert, T. Baur, A. Schütze, S. Böttcher, and T. Sauerwald, "A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors," Sens. Actuators B, vol. 239, pp. 390-396, 2017. doi:10.1016/j.snb.2016.08.002
[91] H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview," Sens. Actuators B, vol. 192, pp. 607-627, 2014. doi:10.1016/j.snb.2013.11.005
[92] A. Kołodziejczak-Radzimska and T. Jesionowski, "Zinc oxide—from synthesis to application: a review," Materials, vol. 7, no. 4, pp. 2833-2881, 2014. doi:10.3390/ma7042833
[93] N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, "Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices," Sci. Reports, vol. 4, p. 6483, 2014. doi:10.1038/srep06483
[94] P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, and X. Xue, "Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics," J. Mater. Chem. A, vol. 3, no. 7, pp. 3529-3535, 2015. doi:10.1039/C4TA06266C
[95] M. Hjiri, L. El Mir, S. Leonardi, A. Pistone, L. Mavilia, and G. Neri, "Al-doped ZnO for highly sensitive CO gas sensors," Sens. Actuators B, vol. 196, pp. 413-420, 2014. doi:10.1016/j.snb.2014.01.068
[96] B. Yuliarto, M. F. Ramadhani, N. L. W. Septiani, and K. A. Hamam, "Enhancement of SO2 gas sensing performance using ZnO nanorod thin films: the role of deposition time," J. Mater. Sci., vol. 52, no. 8, pp. 4543-4554, 2017. doi: =10.1007/s10853-016-0699-5
[97] L. Vayssieres, "Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions," Adv. Mater., vol. 15, no. 5, pp. 464-466, 2003. doi:10.1002/adma.200390108
[98] B. Fang, C. Zhang, W. Zhang, and G. Wang, "A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode," Elec. Acta, vol. 55, no. 1, pp. 178-182, 2009. doi:10.1016/j.electacta.2009.08.036
[99] Y. Xing and G. Wang, "Optical properties of the ZnO nanotubes synthesized via vapor phase growth," Appl. Phys. Lett., vol. 83, no. 9, pp. 1689-1691, 2003. doi:10.1016/j.electacta.2009.08.036
[100] Y. T. Tsai, S. J. Chang, I. T. Tang, Y. J. Hsiao, and L. W. Ji, "High density novel porous ZnO nanosheets based on a microheater chip for ozone sensors," IEEE Sens. J, 2018. doi:10.1109/JSEN.2018.2830508
[101] Y. Al-Hadeethi, and B. M. Raffah, "Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles," Ceram. Int., vol. 43, no. 9, pp. 6765-6770, 2017. doi:10.1016/j.ceramint.2017.02.088
[102] G. Zhang, "Morphology controlled syntheses of Cr doped ZnO single-crystal nanorods for acetone gas sensor," Mater. Lett., vol. 165, pp. 83-86, 2016. doi:10.1016/j.matlet.2015.11.112
[103] L. Zhu, Y. Li, and W. Zeng, "UV-enhanced ethanol sensor based on nanorod-assembled flower-like ZnO," Physic. E, vol. 94, pp. 123-125, 2017. doi:10.1016/j.physe.2017.08.004
[104] B. Behera and S. Chandra, "An innovative gas sensor incorporating ZnO-CuO nanoflakes in planar MEMS technology," Sens. Actuators B, vol. 229, pp. 414-424, 2016. doi:10.1016/j.snb.2016.01.079
[105] C. J. Chang, C. Y. Lin, J. K. Chen, and M. H. Hsu, "Ce-doped ZnO nanorods based low operation temperature NO2 gas sensors," Ceram. Int., vol. 40, no. 7, pp. 10867-10875, 2014. doi:10.1016/j.ceramint.2014.03.080
[106] L. Meng, and Y. Qin, "Enhancing the performance of room temperature ZnO microwire gas sensor through a combined technology of surface etching and UV illumination," Mater. Lett., vol. 212, pp. 296-298, 2018. doi:10.1016/j.matlet.2017.10.102
[107] E. Wongrat, N. Chanlek, C. Chueaiarrom, B. Samransuksamer, N. Hongsith, and S. Choopun, "Low temperature ethanol response enhancement of ZnO nanostructures sensor decorated with gold nanoparticles exposed to UV illumination," Sens. Actuators A, vol. 251, pp. 188-197, 2016. doi:10.1016/j.sna.2016.10.022
[108] L. Silva, and J. M’Peko, "UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature," Sens. Actuators B, vol. 240, pp. 573-579, 2017. doi:10.1016/j.snb.2016.08.158
[109] X. Wang, C. Song, K. Geng, F. Zeng, and F. Pan, "Luminescence and Raman scattering properties of Ag-doped ZnO films," J. Phys. D, vol. 39, no. 23, p. 4992, 2006. doi:10.1088/0022-3727/39/23/014
[110] S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Sci. Tech. Adv. Materials, vol. 10, no. 1, p. 013001, 2009. doi:10.1088/1468-6996/10/1/013001
[111] A. Arunachalam, S. Dhanapandian, and M. Rajasekaran, "Morphology controllable flower like nanostructures of Ag doped ZnO thin films and its application as photovoltaic material," J. Anal. Appl. Pyro., vol. 123, pp. 107-117, 2017. doi:10.1016/j.jaap.2016.12.019
[112] M. H. Hsu and C. J. Chang, "Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability," J. Hazard. Mater., vol. 278, pp. 444-453, 2014. doi:10.1016/j.jhazmat.2014.06.038
[113] K. Vanheusden, C. Seager, W. t. Warren, D. Tallant, and J. Voigt, "Correlation between photoluminescence and oxygen vacancies in ZnO phosphors," Appl. phys. lett., vol. 68, no. 3, pp. 403-405, 1996. doi:10.1063/1.116699
[114] T. Do, H. Giang, P. Ngan, G. Thai, and T. Lam, "Correlation between photoluminescence spectra with gas sensing and photocatalytic activities in hierarchical ZnO nanostructures," RSC Adv., vol. 7, no. 16, pp. 9826-9832, 2017. doi:10.1039/C6RA27737C
[115] S. Kumar, V. Singh, and A. Tanwar, "Structural, morphological, optical and photocatalytic properties of Ag-doped ZnO nanoparticles," J. Mater. Sci., vol. 27, no. 2, pp. 2166-2173, 2016. doi:10.1007/s10854-015-4227-1
[116] Y. K. Lakshmi, K. Srinivas, B. Sreedhar, M. M. Raja, M. Vithal, and P. V. Reddy, "Structural, optical and magnetic properties of nanocrystalline Zn0.9Co0.1O-based diluted magnetic semiconductors," Mater. Chem. Phys., vol. 113, no. 2-3, pp. 749-755, 2009. doi: 10.1016/j.matchemphys.2008.08.021
[117] Y. Jin, Q. Cui, K. Wang, J. Hao, Q. Wang, and J. Zhang, "Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystals," J. Appl. Phys., vol. 109, no. 5, p. 053521, 2011. doi:10.1063/1.3549826
[118] A. Bougrine, A. El Hichou, M. Addou, J. Ebothé, A. Kachouane, and M. Troyon, "Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis," Mater. Chem. Phys., vol. 80, no. 2, pp. 438-445, 2003. doi:10.1016/S0254-0584(02)00505-9
[119] Y. Ortega, P. Fernández, and J. Piqueras, "Growth and luminescence of oriented nanoplate arrays in tin doped ZnO," Nanotechnology, vol. 18, no. 11, p. 115606, 2007. doi:10.1088/0957-4484/18/11/115606
[120] A. Al-Hajry, A. Umar, Y. Hahn, and D. Kim, "Growth, properties and dye-sensitized solar cells–applications of ZnO nanorods grown by low-temperature solution process," Superlatt. Microstru., vol. 45, no. 6, pp. 529-534, 2009. doi:10.1016/j.spmi.2009.02.003
[121] C. Ren, and B. Yang, "Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance," J. Hazard. Mater., vol. 182, no. 1-3, pp. 123-129, 2010. doi:10.1016/j.jhazmat.2010.05.141
[122] S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee, and M. H. Cho, "Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite," J. Phys. Chem. C, vol. 117, no. 51, pp. 27023-27030, 2013. doi:10.1021/jp410063p
[123] S. Mahendia, A. Kumar Tomar, P. K. Goyal, and S. Kumar, "Tuning of refractive index of poly (vinyl alcohol): Effect of embedding Cu and Ag nanoparticles," J. Appl. Phys., vol. 113, no. 7, p. 073103, 2013. doi:10.1063/1.4792473
[124] Q. Xiang, and J. Xu, "Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties," Sens. Actuators B, vol. 143, no. 2, pp. 635-640, 2010. doi:10.1016/j.snb.2009.10.007
[125] L. Ma, and S. Y. Ma, "Preparation of Ag-doped ZnO-SnO2 hollow nanofibers with an enhanced ethanol sensing performance by electrospinning," Mater. Lett., vol. 209, pp. 188-192, 2017. doi:10.1016/j.matlet.2017.08.004
[126] J. Liu, and Y. Gau, "Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide," Sens. Actuators B, vol. 249, pp. 715-724, 2017. doi:10.1016/j.snb.2017.04.190
[127] L. Chen and S. C. Tsang, "Ag doped WO3-based powder sensor for the detection of NO gas in air," Sens. Actuators B, vol. 89, no. 1-2, pp. 68-75, 2003. doi:10.1016/S0925-4005(02)00430-6
[128] R. Dhahri, and M. Hjiri, "Gas sensing properties of Al-doped ZnO for UV-activated CO detection," J. Phys. D, vol. 49, no. 13, p. 135502, 2016. doi:10.1088/0022-3727/49/13/135502
[129] J. Zhang, X. Liu, G. Neri, and N. Pinna, "Nanostructured Materials for Room‐Temperature Gas Sensors," Adv. Mater., vol. 28, no. 5, pp. 795-831, 2016. doi:10.1002/adma.201503825
[130] Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, "Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles," Nano lett., vol. 8, no. 6, pp. 1649-1653, 2008. doi:10.1021/nl0803702
[131] V. V. Titov, and A. A. Lisachenko, "On the nature of the effect of adsorbed oxygen on the excitonic photoluminescence of ZnO," J. Lumin., vol. 195, pp. 153-158, 2018. doi:10.1016/j.jlumin.2017.11.022
[132] O. Lupan, and L. Chow, "Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature," Sens. Actuators B, vol. 144, no. 1, pp. 56-66, 2010. doi:10.1016/j.snb.2009.10.038
[133] O. Lupan, B. Viana, V. Cretu, V. Postica, R. Adelung, and T. Pauporté, "Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications," ACS Appl. Mater. Interfaces, vol. 22, pp. 11871-11880. doi:10.1021/acsami.5b01496
[134] C. Karunakaran, V. Rajeswari, and P. Gomathisankar, "Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO," Solid State Sciences, vol. 13, no. 5, pp. 923-928, 2011. doi:10.1016/j.solidstatesciences.2011.02.016
[135] O. Lupan, L. Chow, T. Pauporté, L. Ono, B. R. Cuenya, and G. Chai, "Highly sensitive and selective hydrogen single-nanowire nanosensor," Sens. Actuators B, vol. 173, pp. 772-780, 2012. doi:10.1016/j.snb.2012.07.111
[136] J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, "ZnO nanowire transistors," J. Phys. Chem. B, vol. 109, no. 1, pp. 9-14, 2005. doi:10.1021/jp0452599
[137] O. Lupan, and R. Adelung, "Silver-doped zinc oxide single nanowire multifunctional nanosensor with a significant enhancement in response," Sens. Actuators B, vol. 223, pp. 893-903, 2016. doi:10.1016/j.snb.2015.10.002
[138] A. McCartt, J. Wells, and E. Teoh, "Attitudes toward in-vehicle advanced alcohol detection technology," Traff. Inj. Preven., vol. 11, no. 2, pp. 156-164, 2010. doi:10.1080/15389580903515419
[139] H. J. Choi, S. J. Choi, S. Choo, I. D. Kim, and H. Lee, "Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules," Sci. Reports, vol. 6, p. 18731, 2016. doi:10.1038/srep18731
[140] G. Peng, and H. Haick, "Diagnosing lung cancer in exhaled breath using gold nanoparticles," Nature nanotechnology, vol. 4, no. 10, p. 669, 2009. doi:10.1038/nnano.2009.235
[141] H. Haick, Y. Y. Broza, P. Mochalski, V. Ruzsanyi, and A. Amann, "Assessment, origin, and implementation of breath volatile cancer markers," Chem. Soci. Rev., vol. 43, no. 5, pp. 1423-1449, 2014. doi:10.1039/C3CS60329F
[142] O. Lupan, V. Postica, F. Labat, I. Ciofini, T. Pauporté, and R. Adelung, "Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire," Sens. Actuators B, vol. 254, pp. 1259-1270, 2018. doi:10.1016/j.snb.2017.07.200
[143] G. She, X. Huang, L. Jin, X. Qi, L. Mu, and W. Shi, "SnO2 Nanoparticle‐Coated ZnO Nanotube Arrays for High‐Performance Electrochemical Sensors," Small, vol. 10, no. 22, pp. 4685-4692, 2014. doi:10.1002/smll.201401471
[144] D. Acharyya, N. Banerjee, and P. Bhattacharyya, "A comparative study on methanol sensing performance of ZnO nanoflower and nanorod based resistive devices," in SENSORS, 2014 IEEE, 2014: IEEE, pp. 811-814. doi:10.1109/ICSENS.2014.6985123
[145] C. Xiao, T. Yang, M. Chuai, B. Xiao, and M. Zhang, "Synthesis of ZnO nanosheet arrays with exposed (100) facets for gas sensing applications," Phys. Chem. Chem. Phys., vol. 18, no. 1, pp. 325-330, 2016. doi:10.1039/C5CP04183J
[146] C. Lin, S. J. Chang, W. S. Chen, and T. J. Hsueh, "Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell," RSC Adv., vol. 6, no. 14, pp. 11146-11150, 2016. doi:10.1039/C5RA23028D
[147] B. Yuliarto, L. Nulhakim, M. F. Ramadhani, M. Iqbal, and A. Nuruddin, "Improved performances of ethanol sensor fabricated on Al-doped ZnO nanosheet thin films," IEEE Sens. J, vol. 15, no. 7, pp. 4114-4120, 2015. doi:10.1109/JSEN.2015.2410995
[148] V. Sharma, A. Mohammad, V. Mishra, A. Chaudhary, K. Kapoor, and S. Mobin, "Fabrication of innovative ZnO nanoflowers showing drastic biological activity," New J. Chem., vol. 40, no. 3, pp. 2145-2155, 2016. doi:10.1039/C5NJ02391B
[149] S. H. Park, J. Y. Ryu, H. H. Choi, and T. Kwon , "Zinc oxide thin film doped with Al2O3, TiO2 and V2O5 as sensitive sensor for trimethylamine gas," Sens. Actuators B, 46, no. 2, pp. 75-79, 1998. doi:10.1016/S0925-4005(97)00324-9
[150] Z. Zhan, and Y. Lin, "Strategy for preparing Al-doped ZnO thin film with high mobility and high stability," Cryst. Growth Des., vol. 11, no. 1, pp. 21-25, 2010. doi:10.1021/cg101216z
[151] K. Tian, S. Alex, G. Siegel, A. J. M. S. Tiwari, and E. C, "Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode," Mater. Sci. Engin. C, vol. 46, pp. 548-552, 2015. doi:10.1016/j.msec.2014.10.064
[152] Y. K. Su, S. Peng, L. Ji, C. Wu, W. Cheng, and C. Liu, "Ultraviolet ZnO nanorod photosensors," Langmuir, vol. 26, no. 1, pp. 603-606, 2009. doi:10.1021/la902171j
[153] J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, and B. Cao, "High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles," Sens. Actuators B, vol. 199, pp. 339-345, 2014. doi:10.1016/j.snb.2014.04.010
[154] J. Gangwar, B. K. Gupta, P. Kumar, S. K. Tripathi, and A. K. Srivastava, "Time-resolved and photoluminescence spectroscopy of θ-Al2O3 nanowires for promising fast optical sensor applications," Dalton Trans., vol. 43, no. 45, pp. 17034-17043, 2014. doi:10.1039/C4DT01831A
[155] S. M. Majhi, P. Rai, S. Raj, B. S. Chon, K. K. Park, and Y. T. Yu, "Effect of Au nanorods on potential barrier modulation in morphologically controlled Au@Cu2O core–shell nanoreactors for gas sensor applications," ACS Appl. Mater. Interfaces, vol. 6, no. 10, pp. 7491-7497, 2014. doi:10.1021/am5008694
[156] A. Mezni, A. Mlayah, V. Serin, and L. S. Smiri, "Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process," Mater. Chem. Phys., vol. 147, no. 3, pp. 496-503, 2014. doi:10.1016/j.matchemphys.2014.05.022
[157] W. Kim, M. Choi, and K. Yong, "Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties," Sens. Actuators B, vol. 209, pp. 989-996, 2015. doi:10.1016/j.snb.2014.12.072
[158] J. Li, and M. Zhang, "Highly sensitive humidity sensors based on Sb-doped ZnSnO3 nanoparticles with very small sizes," CrystEngComm, vol. 16, no. 14, pp. 2977-2983, 2014. doi:10.1039/C3CE42172D
[159] M. Balde, A. Vena, and B. Sorli, "Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors," Sens. Actuators B, vol. 220, pp. 829-839, 2015. doi:10.1016/j.snb.2015.05.053
[160] H. J. Ullrich, "RW Cahn, P. Haasen, EJ Kramer (Eds). Materials science and technology A comprehensive treatment. Volume 2B: Characterization of Materials (Part II) Volume Editor: E. Lifshin. VCH Weinheim; New York; Basel; Cambridge; Tokyo 1994, 775 pages, 491 figures, 32 tables, DM 450,–ISBN 3‐527‐28265‐3 (VCH Weinheim), ISBN 1‐56081‐128‐5 (VCH, New York)," Crystal Research and Technology, vol. 29, no. 6, pp. 786-786, 1994. doi:10.1002/crat.2170290603
[161] F. S. Tsai and S. J. Wang, "Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets," Sens. Actuators B, vol. 193, pp. 280-287, 2014. doi:10.1016/j.snb.2013.11.069
[162] A. A. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. McLean, and S. M. George, "Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition," J. Phys. Chem. C, vol. 112, no. 12, pp. 4573-4580, 2008. doi:10.1021/jp076866+
[163] R. Nahar, "Study of the performance degradation of thin film aluminum oxide sensor at high humidity," Sens. Actuators B, vol. 63, no. 1-2, pp. 49-54, 2000. doi:10.1016/S0925-4005(99)00511-0
[164] B. R. Cuenya, "Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects," Thin Solid Films, vol. 518, no. 12, pp. 3127-3150, 2010. doi:10.1016/j.tsf.2010.01.018
[165] Q. Wan, and T. H. Wang. "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Appl. Phys. Lett., vol. 84, no. 18, pp. 3654-3656, 2004. doi:10.1063/1.1738932
[166] L. Zhu, Y. Li, and W. Zeng, "Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties," Appl. Surf. Sci., vol. 427, pp. 281-287, 2018. doi:10.1016/j.apsusc.2017.08.229
[167] S. Yan, and S. Y. Ma, "Synthesis of SnO2-ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance," Sens Actuators B, vol. 221, pp. 88-95, 2015. doi:10.1016/j.snb.2015.06.104
[168] N. Banerjee, S. Roy, C. Sarkar, and P. Bhattacharyya, "Effect of Humidity on Ethanol Sensing Performance of Pd Sensitized ZnO Nanorod Based Sensors," J. Surf. Inter, Mater., vol. 2, no. 2, pp. 154-160, 2014. doi:10.1166/jsim.2014.1042
[169] M. Damaghi, J. W. Wojtkowiak, and R. Gillies, "pH sensing and regulation in cancer," Front. Physiol., vol. 4, p. 370, 2013. doi:10.3389/fphys.2013.00370
[170] J. Liu, and X. J. Lianga, "pH-sensitive nano-systems for drug delivery in cancer therapy," Biotech. Adv., vol. 32, no. 4, pp. 693-710, 2014. doi:10.1016/j.biotechadv.2013.11.009
[171] C. Schultealbert, T. Baur, A. Schütze, S. Böttcher, and T. Sauerwald, "A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors," Sens. Actuators B, vol. 239, pp. 390-396, 2017. doi:10.1016/j.snb.2016.08.002
[172] M. Grundmann, "Transparent Conductive Oxide Semiconductors," The Physics of Semiconductors: Springer, 2016, pp. 575-579. doi:10.1007/978-3-319-23880-7_20
[173] H.-H. Li, "Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor," Thin Solid Films, vol. 529, pp. 173-176, 2013. doi:10.1016/j.tsf.2012.05.045
[174] Y. L. Chin, and J. C. Chou, "A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process," Sens. Actuators B, vol. 75, no. 1-2, pp. 36-42, 2001. doi:10.1016/S0925-4005(00)00739-5
[175] L. Santos, "WO3 nanoparticle-based conformable pH sensor," ACS Appl. Mater. Interfaces, vol. 6, no. 15, pp. 12226-12234, 2014. doi:10.1021/am501724h
[176] R. Zhao, M. Xu, J. Wang, and G. J. Chen, "A pH sensor based on the TiO2 nanotube array modified Ti electrode," Elect. Acta, vol. 55, no. 20, pp. 5647-5651, 2010. doi:10.1016/j.electacta.2010.04.102
[177] G. Katwal, M. Paulose, I. Rusakova, J. Martinez, and O. Varghese, "Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection," Nano Lett., vol. 16, no. 5, pp. 3014-3021, 2016. doi:10.1021/acs.nanolett.5b05280
[178] K. Lokesh, "Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers," IEEE Sens. J, vol. 16, no. 8, pp. 2477-2483, 2016. doi:10.1109/JSEN.2016.2517085
[179] M. Malakooti, B. Patterson, H. Hwang, and H. Sodano, "ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting," Energy Environ. Sci., vol. 9, no. 2, pp. 634-643, 2016. doi:10.1039/C5EE03181H
[180] D. Bagchi, and S. Pal, "Sensitized ZnO nanorod assemblies to detect heavy metal contaminated phytomedicines: spectroscopic and simulation studies," Phys. Chem. Chem. Phys., vol. 19, no. 3, pp. 2503-2513, 2017. doi:10.1039/C6CP08016B
[181] L. Roza, M. Rahman, A. Umar, M. Salleh, "Direct growth of oriented ZnO nanotubes by self-selective etching at lower temperature for photo-electrochemical (PEC) solar cell application," J. Allo.Compounds, vol. 618, pp. 153-158, 2015. doi:10.1016/j.jallcom.2014.08.113
[182] Y. T. Tsai, S. J. Chang, L. W. Ji, Y. J. Hsiao, I. T. Tang, H. Y. Lu, and Y. L. Chu, "High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode," ACS Omega, vol. 3, no. 10, pp. 13798-13807, 2018. doi:10.1021/acsomega.8b01882
[183] Y. T. Tsai, S. J. Chang, I. T. Tang, Y. J. Hsiao, and L. W. Ji, "High density novel porous ZnO nanosheets based on a microheater chip for ozone sensors," IEEE Sens. J., vol. 18, no. 13, pp. 5559-5565, 2018. doi:10.1109/JSEN.2018.2830508
[184] Z. Ibupoto, S. Shah, K. Khun, and M. Willander, "Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase," Sensors, vol. 12, no. 3, pp. 2456-2466, 2012. doi:10.3390/s120302456
[185] L. Maiolo, and G. Fortunato, "Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls," Appl. Phys. Lett., vol. 105, no. 9, p. 093501, 2014. doi:10.1063/1.4894805
[186] D. Barreca, and A. Gasparotto, "1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases," Sens. Actuators B, vol. 149, no. 1, pp. 1-7, 2010. doi:10.1016/j.snb.2010.06.048
[187] Y. Chen, M. Cao, T. Wang, and Q. Wan, "Microwave absorption properties of the ZnO nanowire-polyester composites," Appl. Phys. Lett., vol. 84, no. 17, pp. 3367-3369, 2004. doi:10.1063/1.1702134
[188] M. Sinha, R. Mahapatra, B. Mondal, T. Maruyama, and R. Ghosh, "Ultrafast and reversible gas-sensing properties of ZnO nanowire arrays grown by hydrothermal technique," J. Phys. Chem. C, vol. 120, no. 5, pp. 3019-3025, 2016. doi:10.1021/acs.jpcc.5b11012
[189] C. T. Lee, and Y. S. Chiu, "Photoelectrochemical passivated ZnO-based nanorod structured glucose biosensors using gate-recessed AlGaN/GaN ion-sensitive field-effect-transistors," Sens. Actuators B, vol. 210, pp. 756-761, 2015.
[190] C. Y. Chi, H. I. Chen, W. C. Chen, C. H. Chang, and W. C. Liu, "Formaldehyde sensing characteristics of an aluminum-doped zinc oxide (AZO) thin-film-based sensor," Sens. Actuators B, vol. 255, pp. 3017-3024, 2018. doi:10.1016/j.snb.2017.09.125
[191] C. Lee, W. Chuang, S. Lin, W. Wu, and C. Lin, "A printable humidity sensing material based on conductive polymer and nanoparticles composites," Jpn. J. Appl. Phys., vol. 52, no. 5S1, p. 05DA08, 2013. doi:10.7567/JJAP.52.05DA08
[192] A. Scandurra, E. Bruno, G. Condorelli, M. Grimaldi, and S. Mirabella, "Microscopic model for pH sensing mechanism in zinc-based nanowalls," Sens. Actuators B, vol. 296, p. 126614, 2019. doi:10.1016/j.snb.2019.05.091
[193] C. Kunstmann-Olsen, M. M. Hanczyc, J. Hoyland, S. Rasmussen, H. Rubahn, "Uniform droplet splitting and detection using Lab-on-Chip flow cytometry on a microfluidic PDMS device," Sens. Actuators B, vol. 229, pp. 7-13, 2016. doi:10.1016/j.snb.2016.01.120
[194] A. Gokaltun, M. L. Yarmush, A. Asatekin, and O. Usta, "Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology," Sens. Actuators B, vol. 5, no. 01, pp. 1-12, 2017. doi:10.1016/j.snb.2016.01.120
[195] J. B. You, and S. G. Im, "PDMS-based turbulent microfluidic mixer," Lab Chip, vol. 15, no. 7, pp. 1727-1735, 2015. doi:10.1039/C5LC00070J
[196] I. Shitanda, H. Kiryu, and M. Itagaki, "Improvement in the long-term stability of screen-printed planar type solid-state Ag/AgCl reference electrode by introducing poly (dimethylsiloxane) liquid junction," Elec. Acta, vol. 58, pp. 528-531, 2011. doi:10.1016/j.electacta.2011.09.086
[197] S. Baruah, and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Sci.Tech. Adv. Mater., vol. 10, no. 1, p. 013001, 2009. doi:10.1088/1468-6996/10/1/013001
[198] H. Cong and T. Pan, "Photopatternable conductive PDMS materials for microfabrication," Adv. Func. Mater., vol. 18, no. 13, pp. 1912-1921, 2008. doi:10.1002/adfm.200701437
[199] K. H. Kim, and S. W. Kim, "Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation," Sci. Reports, vol. 3, p. 2017, 2013. doi:10.1038/srep02017
[200] S. Jantrasee, P. Moontragoon, and S. Pinitsoontorn, "Thermoelectric properties of Al-doped ZnO: experiment and simulation," J. Semicond., vol. 37, no. 9, p. 092002, 2016. doi:10.1088/1674-4926/37/9/092002
[201] C. Manoharan, G. Pavithra, M. Bououdina, S. Dhanapandian, and P. Dhamodharan, "Characterization and study of antibacterial activity of spray pyrolysed ZnO: Al thin films," Appl. Nanosci., vol. 6, no. 6, pp. 815-825, 2016. doi:10.1007/s13204-015-0493-8
[202] X. Zi-qiang, D. Hong, L. Yan, and C. Hang, "Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO: Al thin films," Mater. Sci. Semicond. Proce., vol. 9, no. 1-3, pp. 132-135, 2006. doi:10.1016/j.mssp.2006.01.082
[203] Q. Hou, F. Meng, and J. Sun, "Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition," Nanoscale Res. Lett., vol. 8, no. 1, p. 144, 2013. doi:10.1186/1556-276X-8-144
[204] G. Kaur, A. Mitra, and K. Yadav, "Pulsed laser deposited Al-doped ZnO thin films for optical applications," Prog. Nat. Sci., vol. 25, no. 1, pp. 12-21, 2015. doi:10.1016/j.pnsc.2015.01.012
[205] Y. Taur and H. Lin, "Modeling of DG MOSFET I-V $ Characteristics in the Saturation Region," IEEE Transac.Elec. Dev., vol. 65, no. 5, pp. 1714-1720, 2018. doi:10.1109/TED.2018.2818943
[206] P. Batista and M. Mulato, "ZnO extended-gate field-effect transistors as pH sensors," Appl. Phys. Lett., vol. 87, no. 14, p. 143508, 2005. doi:10.1063/1.2084319
[207] J. Chiang, Y. Chen, and J. Chou, "Simulation and experimental study of the pH-sensing property for AlN thin films," Jpn. J. Appl. Phys., vol. 40, no. 10R, p. 5900, 2001. doi:10.1143/JJAP.40.5900
[208] S. P. Chang, and H.T. Hsueh, "ZnO-nanowire-based extended-gate field-effect-transistor pH sensors prepared on glass substrate," Sci. Adv. Mater., vol. 4, no. 11, pp. 1174-1178, 2012. doi:10.1166/sam.2012.1410
[209] X. Hao, "Thickness dependence of structural, optical and electrical properties of ZnO: Al films prepared on flexible substrates," Appl. Surf. Sci., vol. 183, no. 1-2, pp. 137-142, 2001. doi:10.1016/S0169-4332(01)00582-7
[210] W. D. Huang, H. Cao, S. Deb, M. Chiao, and J. Chiao, "A flexible pH sensor based on the iridium oxide sensing film," Sens. Actuators A, vol. 169, no. 1, pp. 1-11, 2011. doi:10.1016/j.sna.2011.05.016
[211] S. Yao, M. Wang, and M. Madou, "A pH electrode based on melt-oxidized iridium oxide," J. Electrochem. Soc., vol. 148, no. 4, pp. H29-H36, 2001. doi:10.1149/1.1353582
[212] S. Ali, O. Nur, M. Willander, and B. Danielsson, "A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire," Sens. Actuators B, vol. 145, no. 2, pp. 869-874, 2010. doi:10.1016/j.snb.2009.12.072
[213] R. Haarindraprasad, and U. Hashim, "Low temperature annealed zinc oxide nanostructured thin film-based transducers: characterization for sensing applications," Plos One, vol. 10, no. 7, p. e0132755, 2015. doi:10.1371/journal.pone.0132755
[214] F. Meng, "Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)," J. Allo. Compounds, vol. 626, pp. 124-130, 2015. doi:10.1016/j.jallcom.2014.11.175
[215] A. Fulati, S. Usman Ali, M. Riaz, G. Amin, O. Nur, and M. Willander, "Miniaturized pH sensors based on zinc oxide nanotubes/nanorods," Sensors, vol. 9, no. 11, pp. 8911-8923, 2009. doi:10.3390/s91108911
[216] J. Y. Li, S. P. Chang, S. J. Chang, and T. Y. Tsai, "Sensitivity of EGFET pH sensors with TiO2 nanowires," ECS Solid State Lett., vol. 3, no. 10, pp. P123-P126, 2014. doi:10.1149/2.0091410ssl
[217] P. Batista, M. Mulato, C. Graeff, F. Fernandez, and F. Marques, "SnO2 extended gate field-effect transistor as pH sensor," Braz. J. Phys., vol. 36, no. 2A, pp. 478-481, 2006. doi:10.1590/S0103-97332006000300066
[218] J. F. Hsu, B. R. Huang, C. S. Huang, and H. L. Chen, "Silicon nanowires as pH sensor," Jpn. J. Appl. Phys., vol. 44, no. 4S, p. 2626, 2005. doi:10.1143/JJAP.44.2626
[219] Y. S. Chiu, C. T. Lee, L. R. Lou, S. C. Ho, and C. T. Chuang, "Wide linear sensing sensors using ZnO: Ta extended-gate field-effect-transistors," Sens. Actuators B, vol. 188, pp. 944-948, 2013. doi:10.1016/j.snb.2013.07.107
[220] H. J. Jang, J. G. Gu, and W. J. Cho, "Sensitivity enhancement of amorphous InGaZnO thin film transistor based extended gate field-effect transistors with dual-gate operation," Sens. Actuators B, vol. 181, pp. 880-884, 2013. doi:10.1016/j.snb.2013.02.056
[221] G. K. Mani, M. Morohoshi, Y. Yasoda, S. Yokoyama, H. Kimura, and K. Tsuchiya, "ZnO-based microfluidic pH sensor: a versatile approach for quick recognition of circulating tumor cells in blood," ACS Appl. Mater. Interfaces, vol. 9, no. 6, pp. 5193-5203, 2017. doi:10.1021/acsami.6b16261