簡易檢索 / 詳目顯示

研究生: 江允中
Chiang, Yun-Chung
論文名稱: 不同閃爍亮暗比對節螺藻之固碳與藻藍素產出之影響
The effect of light/dark flashing on the carbon dioxide fixation and production of C-phycocyanin by Arthrospira platensis
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 112
中文關鍵詞: Arthrospira platensis二氧化碳內部光照反應器LED閃爍效應藻藍素
外文關鍵詞: Arthrospira platensis, carbon dioxide, internally radiated bubble PBR, LED, light/dark flashing, C-phycocyanin
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口增長和工業發展,大量燃燒化石燃料使二氧化碳(CO2)濃度在大氣層中快速增加。因此,發展CO2捕捉與封存技術是當務之急。光合作用已經被視為永續發展的CO2封存方法。光的利用為光合微生物如微藻與藍綠菌的生長和固定CO2一個重要因素,其影響光合生物反應器(PBR)的設計和操作。內部光照光合反應器(Internally radiated PBR)可以維持每個操作單元具有最佳化之光利用,因此在微藻與藍綠菌實場操作上具有發展前景。
    在本研究中,將設計一組設計內部光照PBR並探討節螺藻(Arthrospira platensis)在其不同光條件下的生長特性進行。內部光照PBR的光照條件為內部以LED亮暗閃爍照明與外部以日光燈作為節螺藻生長之光源,其中外部日光燈光照條件為高光強度460 μmol m-2 s-1 與低光強度 360 μmol m-2 s-1;五個LED亮暗比(k)為1(LED連續光照)、0 (無LED光照)、0.9、0.8和0.7在1 Hz下閃爍。節螺藻之生長結果為:在外部高光強度下,單支LED k值為1、0.9、0.8、0.7和0的比生長速率(μ, d-1)分別為0.83、0.44、0.65、0.45和0.35;而在外部低光強度下,單支LED k值為1、0.9、0.8、0.7和0的μ (d-1)分別為0.26、0.24、0.18、0.21和0.23。兩隻LED k值為1和0.8下的μ (d-1)分別為0.79和0.59。根據閃爍理論推論表示,節旋藻之μ在LED k值閃爍下無促進生長之效應,因比生長速率顯示無光集成(no light integration)。然而節螺藻之生質體產率在外部高光強度下,單支LED k值為1、0.8和0.7之光照條件分別為0.24、0.21與0.22 g L-1 d-1,無明顯差別,顯示出閃爍下可獲得相似之節螺藻生質體產率。藻藍素(C-phycocyanin)和碳含量在上述所有光條件下無明顯變化,分別平均占藻乾重9.6%與54%。因此節螺藻之藻藍素產率和固碳速率由其生質體產率來決定高低。藻藍素產率於LED k值為1、0.8和0.7閃爍下分別為21、20和22 mg L-1 d-1。固碳速率於LED k值為1、0.8和0.7閃爍下分別為0.48、0.45和0.45 g L-1 d-1。最高固碳速率與藻藍素產率分別為0.48 g L-1 d-1和22 mg L-1 d-1。亮暗閃爍的效應可表現出節螺藻在藻藍素的產出與二氧化碳之固定具有節省成本方面之優勢,可在不增加LED的能耗而獲得相似的結果。

    The concentration of carbon dioxide (CO2) has increased dramatically in earth’s atmosphere due to fossil fuels burning associated with increased population and industrialization. Therefore, the development of effective CO2 capture and storage technology is urgent and essential. Photosynthesis in microalgae and cyanobacteria has long been recognized as a suitable mean to sequester CO2. Light availability is an important factor for photobioreactor (PBR) design and operation, resulting in growth and CO2 fixation of microorganisms. Internally radiated PBR may maintain optimized light regime in each operation unit and is promising for scale up by increasing numbers of units. The light regime as flashing light in the PBR may enhance microalgae and cyanobacteria growth for increasing light utilization efficiency. Thus, the internally radiated PBR operated in flashing light was established.
    In this study, the growth characteristics of cyanobacteria Arthrospira platensis (A. platensis) under various light conditions were investigated. We constructed an internally radiated bubble column PBR for A. platensis with LED light-dark flashing internally and fluorescent lamps illuminating externally: light intensities of fluorescent lamps were 460 μmol m-2 s-1 for high light intensity conditions and 360 μmol m-2 s-1 for low light intensity conditions; five LED light/dark fractions (k) were set to 1 (continuous illumination), 0 (without LEDs), 0.9, 0.8, and 0.7 at 1 Hz flashing. The specific growth rates (μ, d-1) under LED k = 1, 0.9, 0.8, 0.7, and 0 are 0.83, 0.44, 0.65, 0.45, and 0.35, respectively, at high light intensity conditions; 0.26, 0.24, 0.18, 0.21, and 0.23, respectively, at low light intensity conditions. The μ (d-1) under high light intensity condition with two LEDs at k = 1 and 0.8 are 0.79 and 0.59, respectively. Based on flashing effect theory, the specific growth rates indicate that there is no growth enhancement under LED light/dark flashing, which means there is no light integration enhancement. However, the biomass productivities under LED k = 1, 0.8, and 0.7 at high light intensity conditions show no differences, which are 0.24, 0.21, and 0.22 g L-1 d-1, respectively. The similar biomass productivities are obtained by applying LED light/dark fractions. The contents of C-phycocyanin (CPC) and carbon in dry A. platensis biomass show no differences under all light conditions, which are in average 9.6% and 54%, respectively. Therefore, the output of CPC productivity and carbon fixation rate is dominated by the biomass productivity. The CPC productivity at LED k = 1, 0.8, and 0.7 are 21, 20, and 22 mg L-1 d-1, respectively. The carbon fixation rate at LED k = 1, 0.8, and 0.7 are 0.48, 0.45, and 0.45 g L-1 d-1, respectively. The highest CPC productivity and carbon fixation rate are 22 mg L-1 d-1 and 0.48 g L-1 d-1, respectively. The CPC production and carbon fixation rate of A. platensis are maintained by the light/dark flashing. The cost saving by the light/dark flashing may be advantageous.

    List of Figures E List of Tables H Nomenclature J Chapter 1. Introduction 1 1-1 Motivation 1 1-2 Objectives 6 Chapter 2. Literatures survey 8 2-1 Green house effect and global warming 8 2-2 Photosynthesis 10 2-2.1 Light reactions 10 2-2.2 Dark reactions 13 2-2.3 The outer light-harvesting antennae 15 2-2.4 Interaction between phycobilisomes (PBS) and photosystems 19 2-2.4.1 State transition 19 2-2.4.2 Complementary chromatic adaptation (CCA) 20 2-2.5 Light wavelength on Cyanobacteria and microalgae growth 21 2-2.6 CO2 concentrating mechanism (CCM) 27 2-3 PBR design and Microalgae cultivation 29 2-3.1 PBR and scale up 29 2-3.2 Flashing light effects in microalgae cultivation 32 2-3.3 Photoautotrophic production of CPC 38 2-3.4 Applications of CPC 41 2-3.5 Measurement of CPC concentration 43 2-4 Arthrospira platensis 46 2-4.1 Temperature 48 2-4.2 pH 49 2-4.3 CO2 fixation ability 52 Chapter 3. Materials and Methods 55 3-1 Chemicals and Materials 55 3-1.1 Arthrospira Platensis 55 3-1.2 Cultivation media for A. platensis 55 3-2 Experimental equipments 56 3-2.1 Culturing equipments 56 3-2.2 Analysis equipments 57 3-2.3 Other equipments 58 3-3 Experimental methods 59 3-3.1 PBR 59 3-3.2 LED and fluorescent lamps 62 3-4 Experimental procedures 64 3-4.1 Cultivation of A. Platensis 64 3-4.2 Experimental design 66 3-4.2.1 25 L bubble PBR cultivated outdoor and cultivated indoor with internally radiated LED 66 3-4.2.2 1 L flat plate PBR 68 3-4.3 Measurement of cell density 69 3-4.4 Measurement of optical density 69 3-4.5 CPC extraction and measurement 69 3-5 Data analysis 71 3-5.1 Specific growth rate and biomass productivity 71 3-5.2 Calculation of CO2 fixation rate 71 3-5.3 Calculation of carbon utilization efficiency 71 3-5.4 Calculation of CPC productivity 72 Chapter 4. Results and Discussion 73 4-1 Species identification 73 4-2 Outdoor cultivation of A. platensis 74 4-3 Indoor cultivation of A. platensis 78 4-3.1 The effect of internal illumination on A. platensis growth at normal temperature 79 4-3.1.1 The effect on A. platensis performance with or without internal LED illumination 79 4-3.1.2 The effect of internal LED light/dark flashing on A. platensis performance 83 4-3.2 The effect of internal illumination on A. platensis growth at low temperature 87 4-4 The characteristics of A. platensis growth at red and blue LED light 90 4-5 Biomass and CPC production of A. platensis 93 4-6 Carbon fixation rate and carbon utilization efficiency of A. platensis 97 Chapter 5. Conclusion and Suggestion 101 5-1 Conclusion 101 5-2 Suggestion 102 Reference 103 Appendix 1 110

    Allen, J.F., 2003. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8, 15-19.
    Anderson, S., Newell, R., 2004. Prospects for carbon capture and storage technologies. Annu Rev Env Resour 29, 109-142.
    Arnon, D.I., Allen, M.B., Whatley, F.R., 1954. Photosynthesis by Isolated Chloroplasts. Nature 174, 394-396.
    Babu, T.S., Kumar, A., Varma, A.K., 1991. Effect of Light Quality on Phycobilisome Components of the Cyanobacterium Spirulina-Platensis. Plant Physiol 95, 492-497.
    Badger, M.R., Price, G.D., 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54, 609-622.
    Bassham, J.A., Benson, A.A., Calvin, M., 1950. The Path of Carbon in Photosynthesis .8. The Role of Malic Acid. J Biol Chem 185, 781-787.
    Bennett, A., Bogorad, L., 1973. Complementary chromatic adaptation in a Filamentous Blue-Green-Alga. J Cell Biol 58, 419-435.
    Binaghi, L., Del Borghi, A., Lodi, A., Converti, A., Del Borghi, M., 2003. Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochem 38, 1341-1346.
    Boussiba, S., Richmond, A.E., 1979. Isolation and characterization of phycocyanins from the blue-green-alga Spirulina platensis. Arch. Microbiol. 120, 155-159.
    Boussiba, S., Richmond, A.E., 1980. C-phycocyanin as a storage protein in the blue-green-alga Spirulina platensis. Arch. Microbiol. 125, 143-147.
    Brejc, K., Ficner, R., Huber, R., Steinbacher, S., 1995. Isolation, crystallization, crystal-structure analysis and refinement of allophycocyanin from the cyanobacterium spirulina-platensis at 2.3 angstrom resolution. J. Mol. Biol. 249, 424-440.
    Carlozzi, P., 2003. Dilution of solar radiation through "culture" lamination in photobioreactor rows facing South-North: A way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol. Bioeng. 81, 305-315.
    Carvalho, A.P., Silva, S.O., Baptista, J.M., Malcata, F.X., 2011. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biot 89, 1275-1288.
    Chang, E.H., Yang, S.S., 2003. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot Bull Acad Sinica 44, 43-52.
    Chen, F., Zhang, Y.M., 1997. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Technol. 20, 221-224.
    Chen, H.B., Wu, J.Y., Wang, C.F., Fu, C.C., Shieh, C.J., Chen, C.I., Wang, C.Y., Liu, Y.C., 2010. Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J 53, 52-56.
    Ciferri, O., 1983. Spirulina, the Edible Microorganism. Microbiol Rev 47, 551-578.
    Converti, A., Lodi, A., Del Borghi, A., Solisio, C., 2006. Cultivation of Spirulina platensis in a combined airlift-tubular reactor system. Biochem Eng J 32, 13-18.
    Cornet, J.F., Dussap, C.G., Cluzel, P., Dubertret, G., 1992. A Structured Model for Simulation of Cultures of the Cyanobacterium Spirulina-Platensis in Photobioreactors .2. Identification of Kinetic-Parameters under Light and Mineral Limitations. Biotechnol Bioeng 40, 826-834.
    Costa, J.A.V., Linde, G.A., Atala, D.I.P., Mibielli, G.M., Kruger, R.T., 2000. Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World J Microb Biot 16, 15-18.
    CO2Now.org, Global Carbon Emissions, 2013. (http://co2now.org/Current-CO2/CO2-Now/global-carbon-emissions.html)
    Csogor, Z., Herrenbauer, M., Perner, I., Schmidt, K., Posten, C., 1999. Design of a photo-bioreactor for modelling purposes. Chem Eng Process 38, 517-523.
    Das, P., Lei, W., Aziz, S.S., Obbard, J.P., 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour. Technol. 102, 3883-3887.
    De Morais, M.G., Costa, J.A.V., 2007. Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129, 439-445.
    De Oliveira, M.A.C.L., Monteiro, M.P.C., Robbs, P.G., Leite, S.G.F., 1999. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquacult Int 7, 261-275.
    Demarsac, N.T., 1977. Occurrence and Nature of Chromatic Adaptation in Cyanobacteria. J Bacteriol. 130, 82-91.
    Donald A. Bryant, G.G., Nicole Tandeau Marsac, Anne-Marie Castets and Germaine CohenBazire, 1979. The Structure of Cyanobacterial Phycobilisomes: a Model. Arch. Microbiol. 123, 15.
    Eriksen, N.T., 2008. Production of phycocyanin - a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biot 80, 1-14.
    Fu, W.Q., Gudmundsson, O., Feist, A.M., Herjolfsson, G., Brynjolfsson, S., Palsson, B.O., 2012. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J Biotechnol 161, 242-249.
    Giordano, M., Beardall, J., Raven, J.A., 2005. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56, 99-131.
    Graverholt, O.S., Eriksen, N.T., 2007. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biot 77, 69-75.
    Grewe, C.B., Pulz, O., 2012. Ecology of Cyanobacteria II. In: Whitton, B.A. (Ed.). Ecology of cyanobacteria. Springer.
    Grobbelaar, J.U., 2012. Microalgae mass culture: the constraints of scaling-up. J Appl Phycol 24, 315-318.
    Grobbelaar, J.U., Nedbal, L., Tichy, V., 1996. Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8, 335-343.
    Gutierrez, R., Gutierrez-Sanchez, R., Nafidi, A., 2008. Trend analysis using nonhomogeneous stochastic diffusion processes. Emission of CO2; Kyoto protocol in Spain. Stoch Env Res Risk A 22, 57-66.
    Hill, R., Bendall, F., 1960. Function of the 2 Cytochrome Components in Chloroplasts - Working Hyothesis. Nature 186, 136-137.
    Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S., 2011. Perspectives on microalgal CO2-emission mitigation systems - A review. Biotechnol Adv 29, 189-198.
    Hsueh, H.T., Chu, H., Yu, S.T., 2007. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66, 878-886.
    Hu, Q., 2004. Industrial Production of Microalgal Cell-mass and Secondary Products – Major Industrial Species (Arthrospira (Spirulina) platensis). In: Richmond, A. (Ed.). Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell, p. 264.
    IEA, CO2 Emissions from Fuel Combustion 2012 - Highlights, 2012. (http://www.iea.org/publications/freepublications/publication/name,4010,en.html)
    Janssen, M., Tramper, J., Mur, L.R., Wijffels, R.H., 2003. Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81, 193-210.
    Jensen, S., Knutsen, G., 1993. Influence of Light and Temperature on Photoinhibition of Photosynthesis in Spirulina-Platensis. J Appl Phycol 5, 495-504.
    Jimenez, C., Cossio, B.R., Labella, D., Niell, F.X., 2003. The Feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 217, 179-190.
    Joshua, S., Mullineaux, C.W., 2004. Phycobilisome diffusion is required for light-state transitions in cyanobacterial. Plant Physiol 135, 2112-2119.
    Kaplan, A., Reinhold, L., 1999. CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Phys 50, 539-+.
    Karl, T.R., Trenberth, K.E., 2003. Modern global climate change. Science 302, 1719-1723.
    Kunjapur, A.M., Eldridge, R.B., 2010. Photobioreactor Design for Commercial Biofuel Production from Microalgae. Ind Eng Chem Res 49, 3516-3526.
    Lee, C.G., Palsson, B.O., 1995. Light-Emitting Diode-Based Algal Photobioreactor with External Gas-Exchange. J Ferment Bioeng 79, 257-263.
    Lu, Y.M., Xiang, W.Z., Wen, Y.H., 2011. Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23, 265-269.
    MacColl, R., 1998. Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311-334.
    Madhyastha, H.K., Sivashankari, S., Vatsala, T.M., 2009. C-phycocyanin from Spirulina fussiformis exposed to blue light demonstrates higher efficacy of in vitro antioxidant activity. Biochem Eng J 43, 221-224.
    Mahajan, G., Kamat, M., 1995. GAMMA-LINOLENIC ACID PRODUCTION FROM SPIRULINA-PLATENSIS. Appl Microbiol Biot 43, 466-469.
    Marquez, F.J., Sasaki, K., Kakizono, T., Nishio, N., Nagai, S., 1993. Growth-Characteristics of Spirulina-Platensis in Mixotrophic and Heterotrophic Conditions. J Ferment Bioeng 76, 408-410.
    Matthijs, H.C.P., Balke, H., VanHes, U.M., Kroon, B.M.A., Mur, L.R., Binot, R.A., 1996. Application of light-emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50, 98-107.
    Miron, A.S., Gomez, A.C., Camacho, F.G., Grima, E.M., Chisti, Y., 1999. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70, 249-270.
    Mullineaux, C.W., 2008. Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95, 175-182.
    Mullineaux, C.W., Allen, J.F., 1990. State-1-State-2 Transitions in the Cyanobacterium Synechococcus 6301 Are Controlled by the Redox State of Electron Carriers between Photosystem-I and Photosystem-Ii. Photosynth Res 23, 297-311.
    Nedbal, L., Tichy, V., Xiong, F.H., Grobbelaar, J.U., 1996. Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8, 325-333.
    NOAA-ESRL (National Oceanic and Atmospheric Administration Earth System Research Laboratory, U.S.), Trends in Atmospheric Carbon Dioxide, 2013. (ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_mlo.txt)
    Ogbonna, J.C., Soejima, T., Tanaka, H., 1999. An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol 70, 289-297.
    Ogbonna, J.C., Yada, H., Masui, H., Tanaka, H., 1996. Novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells. J Ferment Bioeng 82, 61-67.
    Padyana, A.K., Bhat, V.B., Madyastha, K.M., Rajashankar, K.R., Ramakumar, S., 2001. Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem. Biophys. Res. Commun. 282, 893-898.
    Pegallapati, A.K., Nirmalakhandan, N., 2011. Energetic evaluation of an internally illuminated photobioreactor for algal cultivation. Biotechnol Lett 33, 2161-2167.
    Pushparaj, B., Pelosi, E., Tredici, M.R., Pinzani, E., Materassi, R., 1997. An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9, 113-119.
    Rakhimberdieva, M.G., Boichenko, V.A., Karapetyan, N.V., Stadnichuk, I.N., 2001. Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis. Biochemistry 40, 15780-15788.
    Ramanan, R., Kannan, K., Deshkar, A., Yadav, R., Chakrabarti, T., 2010. Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp and Spirulina platensis in a mini-raceway pond. Bioresour. Technol. 101, 2616-2622.
    Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A., Raherimandimby, M., 2008. Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. J. Chem. Technol. Biotechnol. 83, 842-848.
    Reuter, W., Muller, C., 1993. Adaptation of the Photosynthetic Apparatus of Cyanobacteria to Light and Co2. J Photoch Photobio B 21, 3-27.
    Richmond, A., Grobbelaar, J.U., 1986. Factors Affecting the Output Rate of Spirulina-Platensis with Reference to Mass Cultivation. Biomass 10, 253-264.
    Sarcina, M., Tobin, M.J., Mullineaux, C.W., 2001. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942 - Effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem 276, 46830-46834.
    Shu, C.-H., Tsai, C.-C., Liao, W.-H., Chen, K.-Y., Huang, H.-C., 2012. Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp and Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 87, 601-607.
    Skjanes, K., Lindblad, P., Muller, J., 2007. BiOCO2 - A multidisciplinary, biological approach using solar energy to capture CO2 while producing H-2 and high value products. Biomol Eng 24, 405-413.
    Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006. Commercial applications of microalgae. J Biosci Bioeng 101, 87-96.
    Stainforth, D.A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D.J., Kettleborough, J.A., Knight, S., Martin, A., Murphy, J.M., Piani, C., Sexton, D., Smith, L.A., Spicer, R.A., Thorpe, A.J., Allen, M.R., 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403-406.
    Stowe-Evans, E.L., Ford, J., Kehoe, D.M., 2004. Genomic DNA microarray analysis: Identification of new genes regulated by light color in the cyanobacterium Fremyella diplosiphon. J Bacteriol 186, 4338-4349.
    Suter, G.W., Holzwarth, A.R., 1987. A Kinetic-Model for the Energy-Transfer in Phycobilisomes. Biophys J 52, 673-683.
    Terry, K.L., 1986. Photosynthesis in modulated light - quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnol. Bioeng. 28, 988-995.
    Torzillo, G., Pushparaj, B., Bocci, F., Balloni, W., Materassi, R., Florenzano, G., 1986. Production of Spirulina Biomass in Closed Photobioreactors. Biomass 11, 61-74.
    Trabelsi, L., Ben Ouada, H., Bacha, H., Ghoul, M., 2009. Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. J Appl Phycol 21, 405-412.
    Tredici, M.R., Zittelli, G.C., 1998. Efficiency of sunlight utilization: Tubular versus flat photobioreactors. Biotechnol Bioeng 57, 187-197.
    Ugwu, C.U., Aoyagi, H., Uchiyama, H., 2008. Photobioreactors for mass cultivation of algae. Bioresour. Technol. 99, 4021-4028.
    Vejrazka, C., Janssen, M., Streefland, M., Wijffels, R.H., 2011. Photosynthetic Efficiency of Chlamydomonas reinhardtii in Flashing Light. Biotechnol. Bioeng. 108, 2905-2913.
    Walter, A., de Carvalho, J.C., Soccol, V.T., de Faria, A.B.B., Ghiggi, V., Soccol, C.R., 2011. Study of Phycocyanin Production from Spirulina platensis Under Different Light Spectra. Braz. Arch. Biol. Technol. 54, 675-682.
    Wang, B., Li, Y.Q., Wu, N., Lan, C.Q., 2008. CO(2) bio-mitigation using microalgae. Appl Microbiol Biot 79, 707-718.
    Wang, C.Y., Fu, C.C., Liu, Y.C., 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37, 21-25.
    Watanabe, Y., Delanoue, J., Hall, D.O., 1995. Photosynthetic Performance of a Helical Tubular Photobioreactor Incorporating the Cyanobacterium Spirulina-Platensis. Biotechnol Bioeng 47, 261-269.
    Xue, S.Z., Su, Z.F., Cong, W., 2011. Growth of Spirulina platensis enhanced under intermittent illumination. J Biotechnol 151, 271-277.
    Yam, F.K., Hassan, Z., 2005. Innovative advances in LED technology. Microelectron J 36, 129-137.
    Yeh, J.T., Pennline, H.W., 2001. Study of CO2 absorption and desorption in a packed column. Energ Fuel 15, 274-278.
    Yoshikawa, N., Belay, A., 2008. Single-laboratory validation of a method for the determination of c-phycocyanin and allophycocyanin in Spirulina (Arthrospira) supplements and raw materials by spectrophotometry. J. AOAC Int. 91, 524-529.
    You, T., Barnett, S.M., 2004. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem Eng J 19, 251-258.
    Zijffers, J.W.F., Janssen, M., Tramper, J., Wijffels, R.H., 2008. Design process of an area-efficient photobioreactor. Mar Biotechnol 10, 404-415.
    Zittelli, G.C., Tomasello, V., Pinzani, E., Tredici, M.R., 1996. Outdoor cultivation of Arthrospira platensis during autumn and winter in temperate climates. J Appl Phycol 8, 293-301.
    Zarrouk, C., 1966. Contribution a l’eˇıtude d’une cyanophyceˇıe. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthe‘se de Spirulina maxima. Ph.D. Thesis, Universiteˇı de Paris.

    下載圖示 校內:2018-07-17公開
    校外:2018-07-17公開
    QR CODE