| 研究生: |
杜韋葶 Tu, Wei-Ting |
|---|---|
| 論文名稱: |
以足底壓力分佈探討運動鞋舒適度最佳值 Investigation of optimal perceived comfort in sports shoes with plantar pressure distribution |
| 指導教授: |
鄭匡佑
Cheng, Kuang-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 跑步鞋 、運動鞋 、主觀舒適度 、足底壓力 、跑步傷害 |
| 外文關鍵詞: | Running shoes, sports shoes, perceived comfort, plantar pressure, running injuries |
| 相關次數: | 點閱:132 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
舒適度高的運動鞋可以減少運動傷害的可能性,並且可能改善神經肌肉對平衡的控制,也被認為能降低耗氧量,提高跑步經濟性。本研究採用學者提出的舒適度過濾器假說,希望依據足底壓力數據協助個體找到最適合的運動鞋。方法為利用有89個分佈位置點智慧鞋墊,透過可量化的足底壓力數值,進行數值分析或建立模型,探討個體的舒適度最佳值範圍,並嘗試從個體的足底壓力分佈,預測其感覺最舒適的鞋子,希望在未來幫助運動員或休閒民眾找到最適合的運動鞋,以期藉此降低運動傷害發生機率。結果顯示,不同個體的主觀舒適度感覺無法比較或找出規律性,舒適度與足底壓力的關係是因人而異的。因此以個體進行足壓及舒適度之關係的預測可能是比較好的方式。智慧鞋墊89個分佈位置點的足底壓力值,以多項式模型進行最佳化計算,預測結果之RMSE為11.05,舒適度平均誤差值約為7%,可以用來預測舒適度量值接近或排序第一、二名(高舒適鞋)。然而因少量資料做出的數值判斷有限制,建議未來能收取更多的資料,進行非線性辨識及研究。
Enhanced footwear perceived comfort may reduce the likelihood of running injuries and improve neuromuscular control of balance, which is also thought to reduce oxygen consumption and improve running economy. This study adopts the comfort filter paradigm to investigate the relationship between the footwear perceived comfort and plantar pressure distribution. The plantar pressure values of 89 points of the smart insole are used to conduct numerical analysis and build models to explore the optimal range of individual comfort. They are also used to predict the higher ranked comfortable shoes, with the forthcoming aim of assisting athletes or the general public to find suitable shoes and enjoy sports. The results show that the subjective comfort of different individuals cannot be compared or used for finding a regular pattern, and the relationship between comfort and plantar pressure varies from person to person. Therefore, the better way to predict high comfortable shoes is by using the individual relationship between plantar pressure and perceived comfort. Based on the plantar pressure values of 89 points of the smart insole, an optimized polynomial model was built. The RMSE of the predictive result is 11.05, and the average error value of the comfort scale is about 7%, which can be used to predict the high comfort shoes. Generalization of the present results is limited due the amount of data in this study. It is recommended that future studies collect more data for in-depth research, by identifying nonlinear relationships between plantar pressure distribution and perceived comfort.
Anbarian, M., & Esmaeili, H. (2016). Effects of running-induced fatigue on plantar pressure distribution in novice runners with different foot types. Gait & Posture, 48, 52-56. doi:https://doi.org/10.1016/j.gaitpost.2016.04.029
Au, E. Y. L., & Goonetilleke, R. S. (2007). A qualitative study on the comfort and fit of ladies’ dress shoes. Applied Ergonomics, 38(6), 687-696. doi:https://doi.org/10.1016/j.apergo.2006.12.002
Bergstra, S., Kluitenberg, B., Dekker, R., Bredeweg, S., Postema, K., Van den Heuvel, E., . . . Sobhani, S. (2015). Running with a minimalist shoe increases plantar pressure in the forefoot region of healthy female runners. Journal of Science and Medicine in Sport, 18(4), 463-468.
Che, H., Nigg, B. M., & de Koning, J. (1994). Relationship between plantar pressure distribution under the foot and insole comfort. Clinical Biomechanics, 9(6), 335-341. doi:https://doi.org/10.1016/0268-0033(94)90062-0
Deepashini, H., Omar, B., Paungmali, A., Amaramalar, N., Ohnmar, H., & Leonard, J. (2014). An insight into the plantar pressure distribution of the foot in clinical practice: Narrative review. Polish Annals of Medicine, 21(1), 51-56.
Dinato, R. C., Ribeiro, A. P., Butugan, M. K., Pereira, I. L. R., Onodera, A. N., & Sacco, I. C. N. (2015). Biomechanical variables and perception of comfort in running shoes with different cushioning technologies. Journal of Science and Medicine in Sport, 18(1), 93-97. doi:https://doi.org/10.1016/j.jsams.2013.12.003
Gurney, J. K., Kersting, U. G., & Rosenbaum, D. (2008). Between-day reliability of repeated plantar pressure distribution measurements in a normal population. Gait & Posture, 27(4), 706-709. doi:https://doi.org/10.1016/j.gaitpost.2007.07.002
Hennig, E. M. (2014). Plantar pressure measurements for the evaluation of shoe comfort, overuse injuries and performance in soccer. Footwear Science, 6(2), 119-127. doi:10.1080/19424280.2013.873486
Hintzy, F., Cavagna, J., & Horvais, N. (2015). Evolution of perceived footwear comfort over a prolonged running session. The Foot, 25(4), 220-223.
Hoerzer, S., Trudeau, M. B., Edwards, W. B., & Nigg, B. M. (2016). Intra-rater reliability of footwear-related comfort assessments. Footwear Science, 8(3), 155-163. doi:10.1080/19424280.2016.1195451
Jordan, C., & Bartlett, R. (1995). Pressure distribution and perceived comfort in casual footwear. Gait & Posture, 3(4), 215-220. doi:https://doi.org/10.1016/0966-6362(96)82850-5
Lam, W.-K., Ng, W. X., & Kong, P. W. (2017). Influence of shoe midsole hardness on plantar pressure distribution in four basketball-related movements. Research in Sports Medicine, 25(1), 37-47. doi:10.1080/15438627.2016.1258643
Lange, J. S., Maiwald, C., Mayer, T. A., Schwanitz, S., Odenwald, S., & Milani, T. L. (2009). Relationship between plantar pressure and perceived comfort in military boots. Footwear Science, 1(sup1), 30-32. doi:10.1080/19424280902977129
Lindorfer, J., Kröll, J., & Schwameder, H. (2019). Comfort assessment of running footwear: Does assessment type affect inter-session reliability? European Journal of Sport Science, 19(2), 177-185. doi:10.1080/17461391.2018.1502358
Luo, G., Stergiou, P., Worobets, J., Nigg, B., & Stefanyshyn, D. (2009). Improved footwear comfort reduces oxygen consumption during running. Footwear Science, 1(1), 25-29. doi:10.1080/19424280902993001
Mündermann, A., Nigg, B. M., Stefanyshyn, D. J., & Humble, R. N. (2002). Development of a reliable method to assess footwear comfort during running. Gait & Posture, 16(1), 38-45. doi:https://doi.org/10.1016/S0966-6362(01)00197-7
Miller, J. E., Nigg, B. M., Liu, W., Stefanyshyn, D. J., & Nurse, M. A. (2000). Influence of foot, leg and shoe characteristics on subjective comfort. Foot & Ankle International, 21(9), 759-767.
MÜNDERMANN, A., Stefanyshyn, D. J., & Nigg, B. M. (2001). Relationship between footwear comfort of shoe inserts and anthropometric and sensory factors. Medicine & Science in Sports & Exercise, 33(11), 1939-1945.
Nagel, A., Fernholz, F., Kibele, C., & Rosenbaum, D. (2008). Long distance running increases plantar pressures beneath the metatarsal heads: A barefoot walking investigation of 200 marathon runners. Gait & Posture, 27(1), 152-155. doi:https://doi.org/10.1016/j.gaitpost.2006.12.012
Nigg, B., Behling, A.-V., & Hamill, J. (2019). Foot pronation. Footwear Science, 11(3), 131-134. doi:10.1080/19424280.2019.1673489
Nigg, B. M. (2010). Biomechanics of sport shoes: University of Calgary.
Nigg, B. M., Baltich, J., Hoerzer, S., & Enders, H. (2015). Running shoes and running injuries: mythbusting and a proposal for two new paradigms: 'preferred movement path' and 'comfort filter'. British Journal of Sports Medicine, 49(20), 1290. doi:https://doi.org/10.1136/bjsports-2015-095054
Nigg, B. M., & Wakeling, J. M. (2001). Impact Forces and Muscle Tuning: A New Paradigm. Exercise and Sport Sciences Reviews, 29(1). Retrieved from https://journals.lww.com/acsm-essr/Fulltext/2001/01000/Impact_Forces_and_Muscle_Tuning__A_New_Paradigm.8.aspx
Okholm Kryger, K., Jarratt, V., Mitchell, S., & Forrester, S. (2017). Can subjective comfort be used as a measure of plantar pressure in football boots? Journal of Sports Sciences, 35(10), 953-959. doi:10.1080/02640414.2016.1206661
Peduzzi de Castro, M., Abreu, S., Pinto, V., Santos, R., Machado, L., Vaz, M., & Vilas-Boas, J. P. (2014). Influence of pressure-relief insoles developed for loaded gait (backpackers and obese people) on plantar pressure distribution and ground reaction forces. Applied Ergonomics, 45(4), 1028-1034. doi:https://doi.org/10.1016/j.apergo.2014.01.005
Ramirez-Bautista, J. A., Hernández-Zavala, A., Chaparro-Cárdenas, S. L., & Huerta-Ruelas, J. A. (2018). Review on plantar data analysis for disease diagnosis. Biocybernetics and Biomedical Engineering, 38(2), 342-361. doi:https://doi.org/10.1016/j.bbe.2018.02.004
Razak, A. H. A., Zayegh, A., Begg, R. K., & Wahab, Y. (2012). Foot plantar pressure measurement system: A review. Sensors, 12(7), 9884-9912.
Renganathan, G., Kurita, Y., Ćuković, S., & Das, S. (2022). Foot biomechanics with emphasis on the plantar pressure sensing: A review. Revolutions in Product Design for Healthcare: Advances in Product Design and Design Methods for Healthcare, 115-141.
Yang, F., Liu, Z.-l., Ma, R.-y., & Lam, W.-K. (2019). Using plantar pressure to predict insole comfort in running. Footwear Science, 11(sup1), S15-S17. doi:10.1080/19424280.2019.1606054
Zulkifli, S. S., & Loh, W. P. (2020). A state-of-the-art review of foot pressure. Foot and Ankle Surgery, 26(1), 25-32.