簡易檢索 / 詳目顯示

研究生: 陳憶萍
Chen, Yi-Ping
論文名稱: 真空蒸鍍熱氧化法製備奈米線氧化鎵 薄膜及其氣體感測特性之研究
Morphology and electrical properties of gas sensitive Ga2O3 nanowires film prepared by rtheotaxial growth and thermal oxidation
指導教授: 李玉郎
Lee, Yuh_Lang
陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 108
中文關鍵詞: 真空蒸鍍氣體感測器氧化鎵薄膜奈米線
外文關鍵詞: thin film, nanowires, gas sensor, vacuum evaporation, gallium oxide
相關次數: 點閱:56下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   氧化鎵在高溫下穩定且具有半導體的特性,近年來最常被應用於感測還原性氣體。本研究利用真空蒸鍍熱氧化法製備氧化鎵薄膜氣體感測器。以多層膜的製備方式在石英基板上先製備緻密的底層氧化鎵薄膜,最後再分別蒸鍍上三種不同最外層鎵薄膜厚度(0.2, 0.4, 1μm),除了最外層鎵薄膜厚度的變因之外,還有在不同氧化氣氛環境下進行高溫氧化;針對這兩種變因探討在氧化鎵薄膜上奈米線結構的生長情形,以及對氧化鎵薄膜感測性的探討。
      實驗結果顯示,Ga與石英基板間具有良好的親和性,因此初期成長階段呈現一扁平液滴的型態。當鎵薄膜增加至280nm時會出現”balls-on-ball”之型態。製作底層緻密氧化鎵薄膜時,為了避免奈米線的產生,需要將氧化系統保持在純氧的環境下,且採用多層膜的製備方式,此舉除了可以增加鎵薄膜的比表面積並可避免較厚的薄膜產生奈米線的結構。氧化鎵薄膜上奈米線(nanowire)形成的條件主要有兩點:(1) 膜厚要達到一定的厚度才會有明顯的奈米線產生;(2) 在低濃度的氧氣氣氛下較易促進氧化鎵奈米線的成長。最外層鎵薄膜厚度為1μm在無氣體流動的氧化條件下所成長的奈米線長度較長,而鎵薄膜上奈米線結構緻密度最高的氧化條件為空氣與氮氣的混合(氧濃度較低的環境下)。本實驗對氧化鎵薄膜所作的感測性實驗,全部以P型半導體的電阻變化呈現。最外層鎵薄膜厚度為0.2μm與1μm之氧化鎵,於四種不同溫度感測3000ppm酒精,在感測溫度為500℃時的靈敏度最佳,不過其回復時間卻過長,而當感測溫度升高時的靈敏度驟降。理論上來說,感測氣體濃度越高,其電阻變化也會越明顯,不過本實驗製備之奈米線氧化鎵薄膜卻呈現出與理論結果相反的現象。

      Ga2O3 possesses the semiconductor characteristic is stable at high temperature, and has been applied in detecting reducing gas recently. In the current study, Ga2O3 semiconductor thin film was prepared by rtheotaxial growth and thermal oxidation (RGTO) method on SiO2 substrates. Multilayer growth technique was used to prepare the compact gallium oxide bottom thin film. The morphology and the electrical properties of the Ga and Ga2O3 films were measured as functions of the thickness of final Ga film deposited over the compact Ga2O3 bottom thin film and the atmosphere of oxidation. Their effects on the growth of nanowires of the Ga2O3 were examined.
      The experimental results show that there is a good wettability between gallium and SiO2 substrates, as a result, a flat drops are observed morphology during the initial period. A “ball-on-ball” type morphology appears as the thickness of film exceeds 280nm. In order to avoid growing nanowires of Ga2O3 on initial thin film, the oxidation process has to be carried out under pure O2 atmosphere. Multilayer growth technique leads to an increase in the surface area of thin film and an inhibition of nanowires growth for thicker films. There are two necessary requirements for the formation of nanowires: (1) The Ga film must be thick enough and (2) A low O2 concentration promotes the growth of Ga2O3 nanowires. When the oxidation of 1μm Ga film is carried out under rest air, longer nanowires are produced, however highest density of nanowires is observed if the oxidation is carried out under a mixture of air and nitrogen. In the study the resultant Ga2O3 possesses a P-type semiconductor characteristic. The sensitivity of the Ga2O3 films in response to ethanol were found to have an optimum sensing temperature at 500℃, but it’s recovery time was too long, and the sensitivity of the Ga2O3 films decrease with the temperature. Theoretically, an increase of concentration of reactant vapor, must lead to more shifting of the resistance, but a discrepancy results was observed in this study.

    中文摘要……………………………………………………...………………I 英文摘要…………………………………………………….……………….II 誌謝………………………………………………………………………….IV 目錄…………………………………………………….…………………….V 圖目錄…………………………...…………………………………………..IX 表目錄…………………………………………………………….……….XIV 符號說明……………………………………………….…………………..XV 第一章 緒論……………………………………………………………………..…….1 第二章 理論分析…………………………………………………………………….10 2.1 物理氣相沉積…………………………………………………………..10 2.2 真空蒸鍍理論…………………………………………………………..11 2.2.1 真空理論……………………………………………………………...11 2.2.2 蒸鍍理論……………………………………………………...………12 2.3 薄膜沉積機制………………………………………….……………….17 2.3.1 蒸氣原子在基板的表面行為……………………………………...…17 2.3.2 影響薄膜沉積的因素………………………………………………...20 2.3.3 薄膜的成長模式……………………………………………………...23 2.3.4 薄膜的導電度………………………………………………………...26 2.4 Ga2O3的晶體結構及材料特性…………………………………….……29 2.5 氣體感測氣的工作原理…………………………………….………….35 2.5.1 蕭特基接觸…………………………………………………………...35 2.5.2 氧氣的吸附與還原性氣體的作用…………………………………...39 2.5.3 電子空乏層…………………………………………………………...44 2.5.4 氧空位………………………………………………………………...46 2.6 文獻回顧………………………………………………………………..47 第三章 實驗系統及操作…………………………………………………………….48 3.1 實驗流程………………………………………………………………..51 3.2 基板與材料的準備……………………………………………………..52 3.3 真空蒸鍍系統……………………………………….………………….55 3.4 蒸鍍程序………………………………………………………………..57 3.5 高溫氧化程序…………………………………………………………..58 3.6 結構分析………………………………………………………………..59 3.7 電性量測和氣體偵測……………………………………………….….59 第四章 實驗結果與討論………………………………………………………….…61 4.1 不同製備條件下薄膜型態的分析……………………………………..61 4.1.1 膜厚對薄膜型態的影響………………………………………….…..61 4.1.2 多層膜對薄膜型態的影響…………………………………………...64 4.1.3 氧化氣氛及鎵薄膜厚度對奈米線生成的影響……………………...67 4.1.4 氧化時間對奈米線成長的影響……………………………………...74 4.1.5 XRD對氧化鎵薄膜的分析…………………………………………...77 4.2 不同製備條件下薄膜電性的探討………………………………….….81 4.2.1 半導體氣體感測器材料的形式……………………………………...81 4.2.2 感測溫度對靈敏度的影響…………………………………………...84 4.2.3 還原性氣體濃度對靈敏度的影響…………………………………...91 4.2.4 奈米線氧化鎵薄膜溫度與電阻之簡單電性分析…………………...96 4.2.5 感測器電性分析實驗的討論……………………………………...…98 第五章 結論………………………………………………………………………….99 第六章 未來工作方向……………………………………………………………...102 參考文獻…………………………………………………………………...103

    1.葉陶淵,化學感測器中氣體感測器的新動向,科儀新知第20卷4
    期75頁(1999)
    2.李俊遠,氣體感測器介紹,工業材料第124期第82頁,(1997)
    3.W. Gopel, “Chemical sensor technologies: Empirical art and system-
    atic research” in Sensors: A Comprehensive Survey, Volume 2, ed.
    W. Gopel, J. Hesse and J. N. Zemel, New York: VCH, pp. 61(1991)
    4.C. Xu, J. Tamaki, N. Miura and N. Yamazoe, “Correlation between gas
    sensitivity and crystallite size in porous SnO2-based sensors”,
    Chemistry Letters, pp. 441-444(1990)
    5.D. J. Yoo, J. Tamaki, S. J. Park, N. Miura and N. Yamazoe, “Effects of
    thickness and calcinations temperature on tin dioxide sol-derived thin-film
    sensor”, Journal of the Electrochemical Society, Vol. 142, No. 7, pp. L105-
    L107(July 1995)
    6.M. Fleischer, W. Hanrieder and H. Meixner, “Stability of semiconducting
    gallium oxide thin films”, Thin Solid Film, Vol. 190, pp.93-102(1990)
    7.S. R. Morrison, “Chemical sensors” in Semiconductor Sensors, ed. S. M.
    Sze, New York: John Wiley & Sons, Inc., pp.383(1994)
    8.T. Harwig, G. J. Wubs and G. J. Dirksen, “Electrical properties of β-Ga2O3
    single Crystals”, Solid State Communications, Vol. 18, pp. 1223-1225(1976)
    9.R. Roy, V. G. Hill and E. F. Osborn, “Polymorphism of Ga2O3 and the system
    Ga2O3-H2O”, Journal of the American Ceramic Society, Vol. 74, pp. 719-722
    (1952)
    10.S. Geller, “Crystal structure of β-Ga2O3”, The Journal of Chemical
    Physics, Vol.33, No.3, pp. 676-684(1960)
    11.M. Fleischer and H. Meixner, “Sensing reducing gases at high tem-
    peratures using long-term stable Ga2O3 thin films”, Sensors and Actuators
    B, Vol. 6, pp. 257-261(1992)
    12.K. Reichelt and X. Jiang, “The preparation of thin films by physical
    vapor deposition methods ”, Thin Solid Films, Vol. 191, pp. 91-126 (1990)
    13.陳寶清,真空表面處理工學,表面工業雜誌第31期(1992)
    14.賴耿陽,真空蒸鍍應用技術,復漢出版社(1991)
    15.J. A. Venables, G. D. T. Spiller and M. Hanbucken, “Nucleation and Growth
    of thin film”, Reports on Progress in Physics, Vol. 47, pp. 399-459(1984)
    16.J. A. Venables, G. L. Price, “Nucleation of thin films” in Epitaxial
    Growth, ed. J. W. Matthews, New York:Academic Press, pp.381 (1975)
    17.V. E. Bauer, “Phanomenologische theorie der kristallabscheidung an
    oberflachen. I”, Zeitschrift fur Kristallographie, Bd. 110, pp. 327-394
    (1958)
    18.J. A. Venables, G. D. T. Spiller and M. Hanbucken, “Nucleation and growth
    of thin films”, Reports on Progress in Physics, Vol. 47, pp. 399-459(1984)
    19.G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli and A. Camanzi, “A new
    technique for growing large surface area SnO2 thin film (RGTO technique)”,
    Semiconductor Science and Technology, Vol. 5, pp. 1231-1233(1990)
    20.E. H. Sondheimer, “The mean free path of electrons in metals”, Advances in
    Physics, Vol. 1, pp. 1-42(1952)
    21.R. W. Berry, P. M. Hall and M. T. Harris, “Electrical conduction in
    metals” in Thin Film Technology, New York: Van Nostrand, pp. 289(1968)
    22.L. N. Cojocaru and I. D. Alecu, “Electrical properties of β-Ga2O3”,
    Zeitschrift fur Physikalische Chemie Neue Folge, Bd. 84, pp. 325-331 (1973)
    23.D. Gourier, L. Binet and E. Aubay, “Magnetic bistability and memory of
    conduction electrons released from oxygen vacancies in gallium oxide ”,
    Radiation Effects and Defects in Solids, Vol. 134, pp. 223-228(1995)
    24.J. A. Kohn, G. Katz and J. D. Broder, “Characterization of β-Ga2O3 and its
    alumina isomorph, θ-Al2O3 ”, The American Mineralogist, Vol. 42, pp. 398-
    407(1957)
    25.P. Kofstad, “Defect reactions” in Nonstoichiometry, Diffusion and
    Electrical Conductivity in Binary Metal Oxides, New York: Wiley-
    Interscience, pp. 15(1972)
    26.F. A. Kroger, “Detailed description of crystalline solids;
    imperfecttions” in The Chemistry of Imperfect Crystals, Volume 2, New
    York: North-Holland Pub. Co.; American Elsevier, pp. 1 (1974)
    27.J. Geurts, S. Rau, W. Richter and F. J. Schmitte, “SnO films and their
    oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction
    studies”, Thin Solid Films, Vol. 121, pp. 217-225(1984)
    28.林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料第157期 pp. 163-
    169, (2000)
    29.S. R. Morrison, “Chemical sensors” in Semiconductor Sensors, ed. S. M.
    Sze, New York: John Wiley and Sons, Inc., pp. 383(1994)
    30.P. B. Weisz, “Effects of electronic charge transfer between adsorbate and
    solid on chemisorption and catalysis”, The Journal of Chemical Physics,
    Vol. 21, No. 9, pp. 1531-1538(1953)
    31.S. R. Morrison, The Chemical Physics of Surfaces 2nd, New York: Plenum Press
    pp. 251(1990)
    32.D. Kohl, Surface processes in the detection of reducing gases with SnO2-
    based devices, Sensors and Actuators Vol. 18 pp. 71-113(1989)
    33.H. Windischmann and P. Mark, A model for the operation of a thin film SnOx
    conductance-modulation carbon monoxide sensor, Journal of the
    electrochemical society Vol. 126, No. 4, pp. 627-633(1979)
    34.N. Yamazoe, J. Fuchigami, M. Kishikawa and T. Seiyama, Interactions of tin
    oxide surface with O2, H2O and H2, Surface Science Vol. 86, pp. 335-344(1979)
    35.S. C. Chang, “Thin-film semiconductor NOx sensor”, IEEE Transactions on
    Electron Devics, Vol. ED-26, No. 12, pp. 1875-1880 (December 1979)
    36.G. Heiland, “Homogeneous semiconducting gas sensors”, Sensors and
    Actuators, Vol.2, pp. 343-361(1982)
    37.蔡嬪嬪,氣體感測器的新動向,工業材料150期98頁(1999)
    38.張希誠,感測器的基礎與應用:工廠與機械人篇,第49-51頁(1986)
    39.邱碧秀,氣體感測器:半導體型氣體感測器,科儀新知 第6卷第6期 第67-71頁(1985)
    40.鄭煜騰,氣體感測器的市場分析與發展概況,科儀新知第18卷5期76-84頁(1995)
    41.R. Brown, “Thin film substrates” in Handbook of Thin Film Technology, ed.
    L. I. Maissel and R. Glang, New York: McGraw-Hill, pp. 6-37(1970)
    42.C. J. Smithells, “Vapour pressures” in Metals Reference Book, London &
    Boston: Butterworths, pp. 231(1976)
    43.R. D. Doherty, “Dendritic growth” in Crystal Growth, ed. Brian R. Pamplin,
    New York: Pergamon, pp. 485(1980)
    44.W. Hellmich, C. B. Braunmuhl, G. Muller, G. Sberveglieri, M. Berti and C.
    Perego, “The kinetics of formation of gas-sensitive RGTO-SnO2 films”, Thin
    Solid Films, Vol. 263, pp. 231-237(1995)
    45.Yasuhiro Schimizu and Makoto Egashira, MRS Bulletin, 24(6), June, (1998) 18
    46.H. Ogawan, M. Nishikawa, and A. Abe, J. Appl. Phys. 53(1982) 4448
    47.J. F. Mcaleer, P. T. Moseley, J. O. W. Norris and D. E. Williams, Tin
    dioxide gas sensors, Journal of the Chenical Society. Faraday Transactions,
    Vol. 83, pp. 1323-1346(1987)
    48.Chin-Cheng Chen and Chiu-Chen Chen, “Morphology and electrical properties
    of pure and Ti-doped gas-sensitive Ga2O3 film prepared by rheotaxial growth
    and thermal oxidation”, J. Mater. Res., Vol. 19, No. 4, pp. 1105-1117(Apr
    2004)
    49.Andrew P. Lee, Temperature modulation in semiconductor gas sensing, Sensors
    and Actuators B, Vol.60, pp. 35-42(1999)
    50.P. T. Moseley, Materials selection for semiconductor gas sensors, Sensors
    and Actuators B, Vol.6, pp. 149-156(1992)
    51.IRA N. Levine, Physical chemistry 4th edition, MsGraw-Hill, New York, pp.443
    (1995)
    52.R Bene, Application of quadrupole mass spectromter for the analysis of near-
    surface gas composition during DC sensor-tests, Vacuum Vol. 50, number3-4,
    pp. 331-337(1998)
    53.D. Kohl, Adsorption and decomposition of methane on gallium oxide films,
    Sensors and Actuators B, Vol.59, pp. 140-145(1999)
    54.G. Gaggiotti, Temperature dependencies of sensitivity and surface chemical
    composition of SnO gas sensors, Sensors and Actuators B, Vol.24-25, pp. 516-
    519(1995)
    55.J. Mizsei, How can sensitive and selective semiconductor gas sensord be
    made, Sensors and Actuators B, Vol.23, pp. 173-176(1995)
    56.S. R. Morrison, “Adsorption and desorption” in The Chemical Physics of
    Surfaces, New York: Plenum Press, pp. 251(1990)
    57.Stephanie A. Hooker, Nanotechnology Advantages Applied to Gas Sensor
    Development, Business Development Manager Nanomaterials Research, Business
    Communications Co., Inc., Norwalk, CT USA

    下載圖示 校內:2005-07-13公開
    校外:2005-07-13公開
    QR CODE