| 研究生: |
涂正輝 Tu, Cheng-Hui |
|---|---|
| 論文名稱: |
質子交換膜燃料電池之三維流道設計與熱質傳分析 3D Flow Channels Design, Heat and Mass Transfer Analysis for Proton Exchange Membrane Fuel Cell |
| 指導教授: |
張錦裕
Jhang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 流場觀測 、質子交換膜燃料電池 、數值摸擬 |
| 外文關鍵詞: | proton exchange membrane fuel cell, PEMFC, numerical simulation, flow visualization |
| 相關次數: | 點閱:103 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文藉由數值分析的方式來模擬質子交換膜燃料電池內之濃度場以及溫度場之分佈,並對流道內之流場及壓力場加以分析。本文同時針對四種不同形狀(單通道蛇形流道、三通道蛇形流道、平形流道、棋盤形流道)之三維流道,模擬各種流道形狀下質子交換膜燃料電池之性能,並利用水洞實驗觀測各種流道中流體流動的情形,以驗證數值模擬之結果。
在理論分析中,使用那維-史都克(Navier-Stokes equation)作為流場的統御方程式配合能量及成份守恆方程式及電化學相關方程式求解燃料電池內之速度、壓力、溫度、濃度及電流密度之分佈。數值方法中以有限容積法為離散方法,並使用SIMPLEC法求解流場之分佈。本文之結果顯示,陰極側之氧氣濃度分佈對電池之性能有極大的影響,當氧氣不足時會造成濃度過電位,若提高流道入口之壓力或燃料的濃度,則可提升電池之性能。在不同流道形狀的模擬中,單通道蛇形流道之電化學反應性能最佳,但流道之壓損則過大,其他流道之電化學反應性能雖略差,但流道之壓損則小很多。
The numerical analytical methods were used to predict concentration, temperature distribution in PEMFC (proton exchange polymer fuel cell), and the velocity and pressure field in flow channel were also discussed in this study. The polarization curves of these numerical results are coincided with the experimental results. Four different flow channel designs were test in this study to compare the output performances of the fuel cell. The flow visualization were carried out in a water channel to compare the flow and pressure fields with the numerical results.
The Navier-Stokes equations with the energy, species equations and the relative electrochemical equations were solved in this study. The SIMPLEC algorithm with finite volume based scheme was used in this numerical analysis. The results indicated the concentration of oxygen in the cathode are significant effects for the cell performance, the concentration over-potential increased while the failure to transport sufficient oxygen to the catalyst, oppositely the cell performance increased as the inlet pressure or concentration of the reactant are increased. The results also shown the Single-Snake type channel have the best output performance, but the penalty is significant pressure drop.
1. J. Larminie and A. Dicks, Fuel Cell Systems Explained, John Wiley, chapter 1-4, pp. 1-107, 2000.
2. 吳浩青, 李永舫, 電化學動力學,科技圖書股份有限公司, pp. 30-50, 2001.
3. J. S. Newman and C. W. Tobias, Theoretical Analysis of Current Distribution in Porous Electrodes, Journal of The Electrochemical Society, Vol. 109, No. 12, pp. 1183-1191, 1962
4. D. M. Bernardi and M. W. verbrugge, Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte, AIChE Journal, Vol. 37, No. 8, pp. 1151-1163, 1991.
5. D. M. Bernardi and M. W. verbrugge, A Mathematical Model of Solid-Polymer-Electrolyte Fuel Cell, Journal of The Electrochemical Society, Vol. 139, No. 9, pp. 2477-2491, 1992.
6. T. E. Springer, T. A. Zawodzinski and S. Gottefeld, Polymer Electrolyte Fuel Cell Model, Journal of The Electrochemical Society, Vol. 138, No. 8, pp. 2334-2341, 1991.
7. T. E. Springer, M. S. Wilson and S. Gottefeld, Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells Model, Journal of The Electrochemical Society, Vol. 140, No. 12, pp. 3513-3526, 1993.
8. A. Rowe and X. Li, Mathematical modeling of proton exchange membrane fuel cells, Journal of Power Sources, Vol. 102, pp. 82-96, 2001.
9. T. V. Nguyen and R. E. White, A water and heat management model for proton-exchange-membrane fuel cells, Journal of The Electrochemical Society, Vol. 140, No. 8, pp. 2178-2186, 1993.
10. J. S. Yi and T. V. Nguyen, An Along-the–Channel Model for Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, Vol. 145, No. 4, pp. 1149-1159, 1998.
11. J. S. Yi and T. V. Nguyen, Multicomponent transport in porous electrodes of Proton Exchange Membrane Fuel Cells using the interdigitated gas distributors, Journal of The Electrochemical Society, Vol. 146, No. 1, pp. 38-45, 1999.
12. W. He, J. S. Yi and T. V. Nguyen, Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields, AIChE Journal, Vol. 46, No. 10, pp. 2053-2064, 2000.
13. T. F. Fuller and J. S. Newman, Water and thermal management in solid-polymer-electrolyte fuel cells, Journal of The Electrochemical Society, Vol. 140, No. 5, pp. 1218-1225, 1993.
14. T. Okada, G. Xie and M. Meeg, Simulation for water management in membranes for polymer electrolyte fuel cells, Electrochimica Acta, Vol. 43, No. 14-15, pp. 2141-2155, 1998.
15. R. F. Mann, J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley and P.R. Roberge, Development and Application of a Generalized Steady-State Electrochemical Model for a PEM Fuel Cell, Journal of Power Sources, Vol. 86, pp. 173-180, 2000.
16. V. Gurau, H. Liu and S. Kaka?, Two-Dimensional Model for Proton Exchange Membrane Fuel cells, AIChE Journal, Vol. 44, No. 11, pp. 2410-2421, 1998.
17. I-Ming Hsing and P. Futerko, Tow-dimensional simulation of water transport in polymer electrolyte fuel cells, Chemical Engineering Science, Vol. 55, pp. 4209-4218, 2000.
18. S. Um, C. Y. Wang and K. S. Chen, Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, Vol. 147(12), pp. 4485-4493, 1998.
19. L. You and H. Liu, A two-phase flow and transport model for the cathode of PEM fuel cells, International Journal of Heat and Mass Transfer, Vol. 45, pp. 2277-2287, 2002.
20. M. Wohr, K. Bolwin, W. Schnurnberger, M. Fischer, W. Neubrand and G. Eigenberger, Dynamic modeling and simulation of a polymer membrane fuel cell including mass transport limitation, International Journal of Hydrogen Energy, Vol. 23, No. 3, pp. 213-218, 1998.
21. D. Singh, D. M. Lu and N. Djilali, A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells, International Journal of Engineering Science, Vol. 37, pp. 431-452, 1999.
22. J. J. Baschuk and Xianguo Li, Modeling of polymer electrolyte membrane fuel cells with variable degrees of water flooding, Journal of Power Sources, Vol. 86, pp. 181-196, 2000.
23. E. Hontanon, M. J. Escudero, C. Bautista. P. L. Garcia-Ybarra and L. Daza, Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques, Journal of Power Sources, Vol. 86, pp. 363-368, 2000.
24. S. Dutta, S. Shimpalee and J. W. Van Zee, Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell, International Journal of Heat and Mass Transfer, Vol. 44, pp. 2029-2042, 2001.
25. A. A. Kornyshev and A. A. Kulikovsky, Characteristic length of fuel and oxygen consumption in feed channel of polymer electrolyte fuel cells, Electrochimica Acta, Vol. 46, pp. 4389-4395, 2001.
26. H. Dohle, A. A. Kornyshev, A. A. Kulikovsky, J. Mergrl and Stolten, The Current Voltage Plot of PEM Fuel Cell with Long Feed Channels, Electrochemistry Communication, Vol. 3, pp. 73-80, 2001.
27. Dagan, G. Flow and Transport in Porous Formations, Springer-Verlag, 1989.
28. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, John Wiley, 1960.
29. J. P. Van Doormaal and F. D. Raithby, Enhancements of the SIMPLE method for tredicting incompressible fluid flows, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
30. S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere publishing corpotation, 1978.
31. CFD-ACE(U), CFD Research Corporation, Alabama, USA, 2002.
32. E. A. Ticianelli, C. R. Derouin, A. Redondo and S. Srinivsan, Localization of Platinum in Low Catalyst Loading Electrodes to Attain High Power Densities in SPE Fuel Cells, The Journal of Electroanalytical Chemistry, Vol. 251, pp. 275-295, 1988.