| 研究生: |
蔡濱丞 Tsai, Bin-Chen |
|---|---|
| 論文名稱: |
自我排列單分子層於順流式電漿系統中反應速率及機制之研究 The study of the reaction rate and mechanism of self-assembled monolayers treated in the downstream plasma system |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 順流式電漿 、自我排列單分子層 、高解析X光光電子能譜儀 |
| 外文關鍵詞: | high-resolution x-ray photoelectron spectroscopy, downstream plasma, self-assembled monolayers |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自我排列單分子層(Self-Assembled Monolayers;SAMs)之技術已廣泛運用於基礎物理及化學現象的探討及研究。而利用低溫電漿進行有機高分子的表面處理,則可在表面上產生聚合、交錯連結及表面的化學反應,創造出具功能性的表面結構。本研究以N2和Ar作為順流式電漿的激發氣體,對於吸附於Au(111)及Ag(111)上的ODT、DDT SAMs進行不同時間的處理,以探討電漿與SAMs的界面反應中,電漿氣體的選擇、AT分子鏈長及吸附基材的影響效應。
在實驗中,原基材及經處理後的試片使用位於同步幅射中心的高解析X光光電子能譜儀(HRXPS)進行表面分析,以決定表面結構的變化情形。結果顯示,隨著電漿處理時間的增加,表面鍵結變化的情形也隨之發生,且無論在Ar或N2的電漿環境下,表面鍵結的變化皆以氧化物為主。後續的分析上,由C-C(~285.0eV)、S-metal(~162.0eV)兩鍵結曲峰配湊的結果求得的衰退速率作為各組試驗中反應速率比較的依據。主要的討論結果可整理如下:當使用相同的電漿氣體,對吸附於同樣基材上不同鏈長的AT分子進行處理時,短鏈的DDT分子的反應速率較ODT快;以相同的電漿氣體,對同樣的AT分子吸附於Au或Ag的試片進行處理時,吸附於Au的AT分子反應速率較吸附於Ag快;而分別以N2與Ar電漿對同一組試片進行處理時,N2電漿的反應速率較快。文中則以上述實驗結果為基礎,對於此系統中電漿與SAMs的界面反應機制作進一步的討論。
Self-assembled monolayers (SAMs) have been widely applied in field such as fundamental research of physics and chemical phenomenon. Surface modification of organic polymer utilized low-temperature plasma could create functionalized surface by polymerization, crosslink and other chemical reaction. In the study, modification of self-assembled Octadecanethiol (ODT) / Dodecanethiol (DDT) on Au (111) / Ag (111) substrate using low-density nitrogen and argon downstream microwave plasmas with different interval. Chain length of alkanethiolate molecules adsorbed upon a substrate and the applied gaseous plasma are three major factorial bodies that may influence the reaction rate and mechanism at the plasma/SAMs/S-metal interfaces.
Surface characterization of the pristine and the plasma-treated films was performed using high-resolution x-ray photoelectron spectroscopy at the U5 undulator beamline of the National Synchrotron Radiation Research Center. Obviously, with increasing plasma treatment time, noticeable changes on SAMs are observed by HRXPS, whereas the oxygen species play the dominant role in the boundary reactions that produce oxygen-based functional groups whatever in nitrogen or argon plasma process. Further, the intensity of specific bondings, C-C (285.0eV) and S-metal (162.0eV), of each sample were calculated using curve-fitting data. Comparing with the decay trends of C-C and S-metal bonding, one might display the relation of all factors in this system. The main feature of the experimental results can be summarized as follows. Firstly, on the given substrate, the length of alkyl chain noticeably affects the rate and extent of oxidation and desorption processes, while the DDT film either on Au or on Ag can be vastly removed. Secondly, the thin-film SAMs on Ag are much more resistant to plasma-induced degradation than those on Au. Overall, the minor oxygen species in nitrogen plasma is much reactive than those in argon plasma owing to the difference of energy transferring system for the reactive species.
1. J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne and H. Yu, “Molecular Monolayers and Films”, Langmuir, Vol. 3, pp.932-950, 1987
2. David L. Allara, “Critical Issues in Applications of Self-Assembled Monolayers”, Biosensors & Bioelectronics, Vol. 10, pp.771-783, 1995
3. Nirmalya K. Chaki and K. Vijayamohanan, “Self-Assembled Monolayers As a Tunable Platform for Biosensor Applications”, Biosensors & Bioelectronics, Vol. 17, pp. 1-12, 2002
4. P. K. Chu, T. Y. Chen, L. P. Wang and N. Huang, “Plasma-Surface Modification of Biomaterials”, Materials Science and Engineering R, Vol. 36, pp. 143-206, 2002
5. 吳奕德, 利用真空濕式反應室進行及時就地膠原蛋白固定之研究, 中原大學醫學工程系碩士學位論文, 2002
6. J. D. Liao, M. C. Wang, C. C. Weng, R. Klauser, S. Frey, M. Zharnikov and M. Grunze, “Modification of Alkanethiolate Self-Assembled Monolayers by Free Radical-Dominant Plasma”, The Journal of Physical Chemistry B, Vol. 106, pp. 77-84, 2002
7. R. G. Nuzzo and D. L. Allara, “Adsorption of Bifunctional Organic Disulfides on Gold Surface”, Journal of the American Chemical Society, Vol. 105, pp. 4481-4483, 1983
8. R. G. Nuzzo, B. R. Zegarski and L. H. Dubois, “Fundamental Study of the Chemisorption of Organosulfur Compounds on Au(111). Implications for Molecular Self-Assembly on Gold Surface”, Journal of the American Chemical Society, Vol. 109, pp. 733-740, 1987
9. N. Camillone III, C. E. D. Chidsey, G. Y. Liu and G. Scoles, “Superlattice Structure at the Surface of a Monolayer of Octadecanethiol Self-Assembled on Au(111)”, The Journal of chemical physics, Vol. 98, No. 4, pp. 3503-3511, 1993
10. C. D. Bain and G. M. Whitesides, “Formation of Monolayers by the Coadsorption of Thiols on Gold : Variation in Length of Alkyl Chain”, Journal of the American Chemical Society, Vol. 111, pp. 7164-7175, 1989
11. J. P. Folkers, P. E. Laibinis and G. M. Whitesides, “Self-Assembled Monolayers of Alkanethiols on Gold : Comparisons of Monolayers Containing Mixture of Short- and Long-Chain Constituents with CH3 and CH2OH Terminal Groups”, Langmuir, Vol. 8, pp. 1330-1341, 1992
12. P. E. Laibinis, G. M. Whiteside, D. L. Allara, Y. T. Tao, A. N. Parikh and R. G. Nuzzo, “Comparison of the Structures an Wetting Properties of Self Assembled Monolayers of n-Alkanethiols on the Coinage Metal Surfaces, Cu, Ag, Au”, Journal of the American Chemical Society, Vol. 113, pp. 7152-7167, 1991
13. A. Ulman, An Introduction to Ultrathin Organic Films From Langmuir-Blodgett
to Self-Assembly, Part 3, Rochester, 1991
14. T. Ishida, M. Hara, I. Kojima, S. Tsuneda, N. Nishida, H. Sasabe and W. Knoll, “High Resolution X-ray Spectroscopy Measurements of Octadecanethiol Self- Assembled Monolayers on Au(111)”, Langmuir, Vol. 14, pp. 2092-2096, 1998
15. T. Ishida, N. Choi, W. Mizutani, H. Tokumoto and I. Kojima, “High Resolution X-ray Photoelectron Spectra of Organosulfur Monolayers on Au(111): S(2p) Spectral Dependence on Molecular Species”, Langmuir, Vol. 15, pp. 6799-6806, 1999
16. R. Yamada, H. Wano and K. Uosaki, “Effect of Temperature on Structure of the Self-Assembled Monolayer of Decanethiol on Au(111) Surface”, Langmuir, Vol.16, pp. 5523-5525, 2000
17. M. Wen, H. Joseph and K. Michael, “Molecular dynamics studies of microscopic wetting phenomena on self-assembled monolayers”, Computational Materials Science, Vol. 3, pp. 481-497, 1995
18. A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, Chemistry Review, Vol. 96, pp. 1533-1554, 1996
19. C. M. Chan and T. M. Ko, “Polymer Surface Modification by Plasmas and Photons”, Surface Science Reports, Vol. 24, pp. 1-54, 1996
20. T. Takada, M. Nakahara, H. Kumagai and Y. Sanada, “Surface Modification and Characterization of Carbon Black with Oxygen Plasma”, Carbon, Vol. 34, No. 9, pp. 1087-1097, 1996
21. V. Hasirci, A. Tezcaner, N. Hasirci and S. Süzer, “Oxygen Plasma Modification of Poly (3 – hydroxybutyrate – co – 3 – hydoxyvalerate ) Film Surfaces for Tissue Engineering Purposes”, Journal of Applied Polymer Science, Vol. 87, 1285-1289, 2003
22. N. Inagaki, S. Tasaka, T. Horiuchi and R. Suyama, “Surface Modification of Poly(aryletherketone) Film by Remote Oxygen Plasma”, Journal of Applied Polymer Science, Vol. 68, pp. 271-279, 1998
23. R. W. Paynter, “XPS Studies of the Ageing of Plasma-Treated Polymer Surface”, Surface and Interface Analysis, Vol. 29, pp. 56-64, 2000
24. S. K. Øiseth, A. Krozer, B. Kasemo and J. Lausmaa, “Surface Modification of Spin-Coating High-Density Polyethylene Films by Argon and Oxygen Glow Discharge Plasma Treatments”, Applied Surface Science, Vol. 202, pp. 92-103, 2002
25. L. J. Gerenser, “X-Ray photoemission study of plasma modified polyethylene surfaces”, Journal of Adhesion Science and Technology, Vol. 1, pp. 303-318, 1987
26. M. C. Wang, J. D. Liao, C. C. Weng, R. klauser, S. Frey, M. Zharnikov and M. Grunze, “The Effect of the Substrate on Response of Thioaromatic Self-Assembled Monolayers to Free Radical-Dominant Plasma”, The Journal of Physical Chemistry B, Vol. 106, pp. 6220-6226, 2002
27. M. C. Wang, J. D. Liao, C. C. Weng, R. klauser, A. Shaporenko, M. Grunze and M. Zharnikov, “Modification of Aliphatic Monomolecular Films by Free Radical Dominant Plasma: The Effect of the Alkyl Chain Length and the Substrate”, Langmuir, Vol. 19, pp. 9774-9780, 2003
28. H. Sellers, A. Ulman, Y. Shnidman and J. E. Eilers, “Structure and Bonding of Alkanethiolates on Gold and Silver surfaces: Implications for Self-Assembled Monolayers”, Journal of the American Chemical Society, Vol. 115, pp. 9389-9401, 1993
29. F. Schreiber, “Structure and Growth of Self-Assembling Monolayers”, Progress in Surface Science, Vol. 65, pp. 151-256, 2000
30. S. Eliezer and Y. Eliezer, The Fourth State of Matter—An Introduction to plasma Science 2nd, Institute of physical Publishing, 2001
31.董家齊、陳寬任, “奇妙的物質第四態—電漿”, 科學發展, Vol. 354, pp. 52-59, 2002
32. F. Barnes and K.-K. Hong, Cold Plasma in Materials Fabrication—From Fundamentals to Application, IEEE Press, 1994
33. I. H. Hutchinson, Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002
34. B. Chapman, Glow Discharge Processes—Sputtering and Plasma Etching, John Wiley and sons, 1980
35. H. V. Boeing, Plasma Science and Technology, Cornell University Press, 1982
36. C. C. Wang and G. H. Hsiue, “Glucose Oxidase Immobilization onto a Plasma-
Induced Graft Copolymerized Polymeric Membrane Modified by Poly(Ethylene Oxide)as a Spacer”, Journal of Applied Polymer Science, Vol. 50, pp. 1141-1149, 1993
37. H. K. Yasuda, Plasma Polymerization, Orlando, Academic Press, 1985
38. H. K. Yasuda, Plasma Polymerization and Plasma Interactions with Polymeric Materials, John Wiley and Sons, 1990
39. 林建中, 高分子化學原理, 歐亞書局, 1996
40. S. D. Lee, G. H. Hsiue and C. Y. Kao, “Preparation and Characterization of a Homobifunctional Silicone Rubber Membrane Grafted with Acrylic Acid Via Plasma-Induced Graft Copolymerization”, Journal of Polymer science: Part A: Polymer Chemistry, Vol. 34, pp. 141-148, 1996
41. Y. L Hsieh. and M Wu., “Residual Reactivity for Surface Grafting of Acrylic Acid on Argon Glow-discharged Poly(ethylene terephalate)(PET) Films”, Journal of Applied Polymer Science, Vol. 43, pp. 2067- 2082, 1991
42. L. Dai, H. A. W. Stjohn, J. B. P. Zientek, R. C. Chatelier and H. J. Griesser, “Biomedical Coatings by the Covalent Immobilization of Polysaccharides onto Gas-Plasma Activated Polymer Surfaces”, Surface and Interface Analysis, Vol. 29, pp. 46-55, 2000
43. 郭正次, “激發光光譜分析”, 材料分析, Ch. 10, 中國材料學會
44. S. C. Chung, C. I. Chen, P. C. Tseng, H. F. Lin, T. E. Dann, Y. F. Song, L. R. Huang, C. C. Chen, J. M. Chuang, K. L. Tsang and C. N. Chang, ”Soft X-ray Spectroscopy Beamline 6 m High Energy Spherical Grating Monochromator at SRRC: Optical Design and First Performance Tests”, Review of Scientific Instruments, Vol. 66, No. 2, pp. 1655-1657, 1995
45. 王兆恩, 張正祥, 同步輻射研究中心簡訊, Vol. 37, pp. 12, 1997
46. 柯正浩, 同步輻射研究中心簡訊, Vol. 39, pp. 6, 1998
47. J. C. Vickerman, “Electron Spectroscopy for Chemical Analysis”, Surface
Analysis, Ch. 3, John Wiley & Sons, 1997
48. 潘扶民, “化學分析電子儀分析”, 材料分析, Ch. 13, 中國材料科學學會, 1998
49. 翁志強, 順流式遠端電漿對單層有機金屬表面反應機制之研究, 私立中原大學醫學工程系碩士論文, 2001
50. 謝登讚, 利用同步輻射源研究具功能性尾端之單層有機分子膜, 私立中原大學醫學工程系碩士論文, 2002
51. C. Olsen and P. A. Rowntree, ”Cond-Selective Dissociation of Alkanethiol Based Self-Assembled Monolayers Adsorbed on Gold Substrates, Using Low-Energy Electron Beam”, Journal of Chemical Physics, Vol. 108, pp. 3750-3764, 1998