簡易檢索 / 詳目顯示

研究生: 蔡耀庭
Tsai, Yao-Ting
論文名稱: 脈衝式Nd-YAG雷射披覆預置金屬粉末/樹脂合成法之特性分析
Characterization of the pulsed Nd-YAG laser cladding with the pre-placed metal powder/resin hybrid method
指導教授: 林震銘
Lin, Jehn-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 117
中文關鍵詞: 脈衝式 Nd-YAG 雷射披覆樹脂
外文關鍵詞: pulse Nd-YAG laser, cladding, resin
相關次數: 點閱:57下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以數值及實驗方法探討脈衝式 Nd-YAG 雷射披覆預置金屬粉末/樹脂合成法進行表面披覆的可行性。數值分析使用有限元素分析軟體 ABAQUS,模擬披覆過程之溫度及應力分佈情形;實驗觀察是利用光硬化樹脂將SUS304 不鏽鋼粉末預置固化於SUS304 不鏽鋼薄板表面後,以雷射聚焦於試件表面進行披覆加工,並觀察及量測披覆試件之機械性質,包括表面形貌及尺寸量測、金相顯微組織觀察、EDS 成份分析、微拉伸分析以及微硬度分析等,探討不同雷射功率、脈衝作用時間以及光硬化樹脂與粉末重量混合比例等製程參數對披覆試件的影響。
    實驗結果顯示,藉由光硬化樹脂將粉末預置固化於基材表面上,可避免粉末因脈衝震波之效應被移除,且披覆點高度與寬度隨著雷射功率增加而增加,但隨著粉末與光硬化樹脂重量混合比例增加而減少。並發現披覆形貌之數值模擬結果與實驗所得之結果具有對應性。經由機械性質觀察及量測後可發現,本製程之披覆金相顯微組織、晶粒大小以及披覆強度與傳統式高功率雷射披覆相近。

    The goal of this study is to characterize the pulsed Nd-YAG laser cladding with the pre-placed metal powder and resin compound. In the numerical analysis, the temperature distribution and thermal stress of the pulsed laser cladding have been simulated by finite element software. In the experiment, the compound of SUS304 stainless steel powder and UV light curable resin were pre-placed on the SUS304 stainless steel plate and irradiated by UV light source and pulsed Nd-YAG laser separately. Furthermore, the clad results have been evaluated by surface profile measurement, metallurgical analysis, EDS analysis, micro tensile test, micro hardness test respectively. With various ratios of the powder and resin composition, the effects of the process parameters were discussed in the experiment.
    Both the numerical and experiment results show that the increase of laser power will increase the height and width of the clad, and the increase of powder composition ratio will decrease the height and width of the clad. It can be found that the microstructure, grain size and clad strength are close to the typical clad results in high power laser cladding processes.

    摘要………………………………………………………… I Abstract…………………………………………………………………… II 誌謝………………………………………………………………………… III 目錄………………………………………………………………………… IV 表目錄……………………………………………………………………… IX 圖目錄……………………………………………………………………… XI 符號說明…………………………………………………………………… XVIII 第一章 緒論………………………………………………………………… 1 1-1 研究背景與目的…………………………………………………………... 1 1-2 文獻回顧……………………………………………..………………… 2 1-2.1 連續式雷射披覆相關研究…………………………………….. 3 1-2.2 脈衝式Nd-YAG 雷射直接披覆相關研究……………… 5 1-2.3 脈衝式Nd-YAG 雷射複合披覆相關研究……………… 8 1-3 本文架構…………………………..………………………………… 12 第二章 脈衝雷射相關現象與製程原理………………………………..… 13 2-1 脈衝雷射引發震波反作用力現象……………………….………. 13 2-2 雷射披覆原理…………………………………………………………15 2-2.1 雷射披覆機制…………………………………….…………….…… 15 2-2.2 雷射披覆加工參數的影響及披覆試件品質…………. 16 2-3 複合材料之複合效應……………….………………………………….. 19 2-3.1 體積分率…………………………………………….…………………. 19 2-3.2 複合材料混合定律………………………………………………… 20 2-3.2.1 密度、比熱、熱膨脹係數及楊氏係數……………… 20 2-3.2.2 熱傳導係數……………………………….……………………. 21 2-4 雙層金屬板件之熱應力理論……………...…………….…… 21 第三章 數值模擬及分析………………………………………………………28 3-1 有限元素軟體ABAQUS 之計算流程………………………….. 28 3-2 ABAQUS 範例驗證……………………………………………………… 30 3-3 有限元素模型及試件幾何尺寸…………………………..………. 33 3-4 材料物理性質……………………………………………………………… 35 3-5 雷射熱源條件……………………………………………………………….38 3-6 模擬基本假設…………………………………………………….…………39 3-7 初始條件及邊界條件………………………….……………………….. 40 3.7.1 初始條件………………………………….…………………………… 40 3.7.2 熱傳模型之邊界條件…………………………………………….. 41 3.7.3 力學模型之邊界條件…………………………………………….. 41 3.7.4 雷射參數及複合層對雷射光之吸收率…………………. 42 3-8 數值結果分析…………………………………………………………… 43 3-8.1 披覆試件之溫度分佈情形…………………………………….. 43 3-8.2 披覆試件之應力分佈情形…………………………………….. 48 3-9 不同製程參數之影響…………………………………………….…….51 第四章 實驗…………………………………………………………………… 56 4-1 實驗流程及配置…………………………………………………………… 56 4-2 實驗參數、條件及方法…………………………………………………. 59 4-2.1 SUS304 不鏽鋼粉末與光硬化樹脂重量比例…..…. 59 4-2.2 預置複合層厚度及厚度控制方法………………..……….. 60 4.2.3 雷射能量條件………………………………………………….…….. 60 4-3 穿透率及雷射功率量測實驗……………………………..………… 61 4-3.1 粉末與光硬化樹脂複合層穿透率………………..……….. 61 4-3.2 雷射功率量測實驗………………………………………………… 63 4-3.3 實驗結果與分析…………………………………………………… 64 4-4 披覆點表面形貌與尺寸實驗……………………………………….. 66 4-4.1 披覆點尺寸量測實驗結果與討論………………………… 66 4-4.2 實驗結果與數值模擬結果之比較………………………… 72 4-5 披覆點金相組織觀察及成份分析實驗………………………… 76 4-5.1 金相組織觀察實驗結果與討論…………………………….. 76 4-5.2 成份分析實驗結果與討論……………………………………. 80 4-6 披覆點微拉伸實驗………………………………………………………. 83 4-6.1 微拉伸試驗設備與配置………………………………………… 83 4-6.2 披覆點微拉伸試件幾何尺寸及條件…………………….. 83 4-6.3 微拉伸實驗結果與討論………………………………………… 86 4-7 披覆點微硬度試驗……………………………………………………….. 90 4-7.1 微硬度實驗條件……………………………………………………. 90 4-7.2 硬度試驗結果………………………………………………………… 91 4-8 結果與討論……………………………………………………………… 93 第五章 綜合討論與建議……………………………………………………. 95 5-1 綜合討論………………………………………………………………… 95 5-2 相關建議與未來發展…………………………………………………… 98 參考文獻…………………………………………………………………… 100 附錄A……………………………………………………………………………… 104 附錄B………………………………………………………………………………… 107 附錄C……………………………………………………………………………… 109 附錄D……………………………………………………………………………… 111 附錄E………………………………………………………………………………… 112 附錄F……………………………………………………………………………… 116 自述…………………………………………………… 117

    [1] Steen W. M., “Laser material processing”, 2nd ed., Springer Verlag, 1998.
    [2] Kannatey-Asibu E., Elijah Kannatey-Asibu Jr., “Principles of Laser Materials Processing”, 1st, Wiley, 2009.
    [3] Lin J. M., “Characterisatuion of Coaxial Laser Cladding”, PhD Thesis, University of Liverpool, 1997.
    [4] Scruby C. B., Drain L. E., “Laser ultrasonics techniques and applications”, Adam Hilger ,New York,1990.
    [5] Walker A. M., Steen W. M., “Laser surface alloying and cladding of aluminum alloys with silicon”, In Proceedings of the International Conference on Aluminum Technology ' 86, p712-723, 1986.
    [6] Zeng X., Tao Z., Zhu B., Zhou E., Cui K., “Investigation of laser cladding ceramic-metal composite coatings: processing modes and mechanisms”, Surface & coatings technology, v79, p209-217, 1996.
    [7] Wu P., Zhou C. Z., Tang X. N., “Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings”, Surface and Coatings Technology, v166, p84-88, 2003.
    [8] Qu S., Wang X., Zhang M., Zou Z., “Microstructure and wear properties of Fe–TiC surface composite coating by laser
    cladding”, Journal of Materials Science, v43, p1546-1551, 2008.
    [9] Yang S., Man H. C., “Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings”, Fabrication of Bioactive HA/Ti Composite Coating by Laser Cladding, Key Engineering Materials, v330-332, p569-572, 2007.
    [10] Lemoine F., Grevey D. F., Vannes A. B., “Cross-section
    modelling of pulsed Nd:YAG laser cladding”, ICALEO, p203-212, 1993.
    [11] Kathuria Y. P., “Nd-YAG laser cladding of 3 2 Cr C and TiC cermets”, Surface and Coatings Technology, v140, p195-199, 2001.
    [12] Huang S. W., Nolan D., “Pre-placed WC/Ni clad layers produced with a pulsed Nd:YAG laser via optical fibres”, Surface and Coatings Technology, v165, p26-34,2002.
    [13] Corbin S. F., Toyserkani E., Khajepour A., “Cladding of an Fe-aluminide coating on mild steel using pulsed laser assisted powder deposition”, Materials Science and Engineering, A354, p48-57, 2003.
    [14] Sun S., Durandet Y., Brandt M., “Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel”, Surface & Coatings Technology, v194, p225-231, 2005.
    [15] Chen S. L., Hsu L. L., “In-process vibration-assisted high power Nd:YAG pulsed laser ceramic-metal composite cladding on Al-alloys”, Optics & Laser Technology, v30, p263-273, 1998.
    [16] Liu Y.H., Guo Z.X., Yang Y., “Laser (a pulsed Nd:YAG)
    cladding of AZ91D magnesium alloy with Al and Al2O3
    powders”, Applied Surface Science, v253, p1722-1728, 2006.
    [17] Jun Y., Sun G.P., Wang H. Y., “Laser (Nd:YAG) cladding of AZ91D magnesium alloys with Al + Si+Al2O3”, Journal of
    Alloys and Compounds, v407, p201-207, 2006.
    [18] Yang Y., Wu H. “Improving the wear resistance of AZ91D
    magnesium alloys by laser cladding with Al–Si powders”,
    Materials Letters, v63, p19-21, 2009.
    [19] Hazra M., Mondal A. K., Kumar S., “Laser surface cladding of MRI 153M magnesium alloy with (Al+Al2O3)”, Surface & Coatings Technology, v203, p2292-2299, 2009.
    [20] Zheng B. J., Chen X. M., Lian J. S., “Microstructure and wear property of laser cladding Al+SiC powders on AZ91D magnesium alloy”, Optics and Lasers in Engineering, v48, p526-532, 2010.
    [21] 黃文祥, 長脈衝雷射引發金屬薄板應力現象之研究, 國立成功大學機械工程研究所碩士論文, 2010.
    [22] 鄭凱宇, 雷射披覆/燒結合成法之表面張力與孔隙現象研究,國立成功大學機械工程系碩士論文, 2009.
    [23] Toyserkani E., Khajepour A. Corbin S. “3-D finite element modeling of laser cladding by powder injection: effect of laser pulse shaping on the process”, Optics and Laser in Engineering, v41, p849-867, 2004.
    [24] Qi H., Mazumder J., “Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition”, JOURNAL OF APPLIED PHYSICS, v100, 2006.
    [25] Lawrence J., Pou J., Low D. K. Y., Toyserkani E., “Advances in laser materials processing”, Woodhead Publishing Ltd, 2010.
    [26] William D. Callister, Jr., “Fundamental of Materials Science and Engineering: An Integrated Approach”, 2st, Wiley, 2004.
    [27] 顧宜, 複合材料, 新文京開發出版股份有限公司, 2002.
    [28] 金重勳, 工程材料, 復文書局, 1996.
    [29] Rayleigh L., “On The Influence of Obstacles Arranged in
    Rectangular Order Upon The Properties of a Medium”, Phil.Mag., v34, p481, 1892.
    [30] Suhir E., “Stresses in Bi-Metal Thermostats”, ASME Journal of Applied Mechanics, Vol. 53, pp. 657-660, 1986.
    [31] Timoshenko, S. P., “ Analysis of Bi-metal Thermo-stats, Journal of the Optical Society of America, Vol. 11, pp. 233-255, 1925.
    [32] Getting Started with ABAQUS/Standard, H.K.S Inc., Pawtuckett, RI, 1998.
    [33] Radaj D., “Heat effects of welding: Temperature Field, Residual stress, Distortion”, Springer Verlag, 1992.
    [34] 李坤洲, 雷射成型於薄板變形之分析及量測, 國立成功大學機械工程系碩士論文, 2001.
    [35] Fischer P., Romano V., “Sintering of commercially pure titanium powder with a Nd:YAG laser source”, Acta Materialia, v51, p1651-1622, 2003.
    [36] Yilbas B. S., Sami M., Shuja S. Z., “Laser-induced thermal stresses on steel surface”, Optics and Lasers in Engineering, v30, p25-37, 1998.
    [37] Lippold J. C., Kotecki D. C., “Welding metallurgy and
    weldability of stainless steels”, Wiley, 2005.
    [38] Kou S., “Welding Metallurgy”, Wiley, 1987.
    [39] 李驊登, 破損分析學講義, 國立成功大學機械工程研究所, 2011.
    [40] 許耀臣, 304L 不鏽鋼電漿電弧銲接件在不同溫度及應變速率下的機械性質與破壞行為, 國立成功大學機械工程系碩士論文, 2003.

    下載圖示 校內:2021-12-30公開
    校外:2021-12-30公開
    QR CODE