| 研究生: |
陳秉暉 Chen, Ping-hui |
|---|---|
| 論文名稱: |
Ga和Ge的添加對Sn-9Zn無鉛銲錫合金抗氧化和拉伸性質之影響 Effects of Adding Ga and Ge on the Anti-Oxidation and Tensile Behavior of Sn-9Zn Lead-Free Solder Alloy |
| 指導教授: |
呂傳盛
Lui, Truan-sheng 陳立輝 Chen, Li-hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 無鉛銲錫 |
| 外文關鍵詞: | Sn-9Zn-xGe, Sn-9Zn-xGa |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以Sn-9Zn無鉛銲錫合金,分別添加不同含量的第三元素Ga(0.4,0.6,0.8 wt.%)和Ge(0.3,0.4,0.5 wt.%),探討Ga和Ge的添加對Sn-9Zn無鉛銲錫合金抗氧化及拉伸變形阻抗的影響。
實驗結果顯示,經120℃油浴2hr的Sn-9Zn-xGa合金其微觀組織,隨著Ga含量的增加,不規則排列的粗大Zn和β-Sn所形成的不規則區域比例增加;規則排列的針棒狀Zn和β-Sn所形成的規則區域比例減少。Sn-9Zn-xGe 合金經120℃油浴2hr之微觀組織顯示,除了初晶Zn和Sn-Zn共晶區之外,還有深灰色的島狀Ge晶出,隨著Ge含量增加,Ge晶出的區域變多且變大。
在固態表面氧化方面,S9ZA、0.4GaA、0.4GeA其表面皆生成ZnO和少量的SnO2 。由於Ga固溶於Sn、Zn之中,造成金屬的活性降低,因此Ga的添加在室溫、空氣中不做任何熱處理的情況下有助於Sn-9Zn的抗氧化。然而在120℃空氣中加熱2hr的情況下,由於表面不易生成氧化物,因此在加熱過程中,金屬表面不受保護,氧化層厚度大增。而添加Ge,由於Ge會析出於晶界而阻礙了Zn2+的擴散,因此造成氧化層較薄。而在120℃空氣中加熱2hr的情況,由於表面的緻密氧化鋅,因此仍形成了保護膜,所以氧化層厚度並未增加。
在凝固表面氧化方面,實驗顯示經過260℃迴銲15分鐘在室溫下冷卻,進行五次的S9ZR、0.4GR和0.4GeR,其表面皆生成ZnO,而無錫的氧化物。而由於Ga固溶於Sn、Zn之中,阻礙了金屬離子的擴散,造成凝固時表面生成氧化鋅的時間增長,使氧化鋅厚度變厚。而添加Ge由於Ge不固溶Sn、Zn之中,因此表面很快的生成氧化鋅,且凝固之後Ge析出在晶界之處,阻礙Zn2+繼續的擴散氧化因此其氧化層厚度較S9ZR薄。
Sn-9Zn-xGa及Sn-9Zn-xGe常溫和高溫(120℃)拉伸時,有動態再結晶的情形發生。而拉伸變形阻抗方面,由於Ga固溶於Sn、Zn之中,而產生了固溶強化。在常溫拉伸中,隨著Ga含量的增加,拉伸變形阻抗增加顯著,而在120℃高溫拉伸,Ga的固溶對拉伸變形阻抗仍有小幅幫助。而添加Ge由於Ge在晶界析出及晶出Ge硬質相強化效果的影響將造成拉伸變形阻抗增加,但隨著Ge含量增加,拉伸變形阻抗增加不明顯。而在120℃高溫環境下,添加Ge對拉伸變形阻抗則完全沒有幫助。
This research used the Sn-9Zn lead-free solder alloy add the third element Ga in different content ( 0.4 , 0.6 , 0.8 wt . % ) and Ge ( 0.3 , 0.4 , 0.5 wt . %) separately to investigate the effects of adding Ga and Ge on the anti-oxidation and tensile behavior of Sn-9Zn lead-free solder alloy.
The experimental results revealed that the microstructure of Sn-9Zn-xGa alloys after oil bath heat treatment at 120℃ for 2hr, with increasing the Ga content , the fraction of the irregular region formed with the coarse Zn particles arranged irregularly and β-Sn increased ; the fraction of the regular region formed with the aligned acicular Zn particles and β-Sn decreased. The microstructure of Sn-9Zn-xGe alloys after oil bath heat treatment at 120℃ for 2hr revealed that besides the pre-eutectic Zn and Sn-Zn eutectic region, there were deep gray Ge phase. The amount and the size of the Ge phase increased with increasing the Ge content.
On the respect of the solid state surface oxidation, the oxidation occur on the surface of S9ZA, 0.4GaA and 0.4GeA were ZnO and few SnO2. Because the Ga was dissolved in both Sn and Zn phases and the activity decreased , the adding of Ga improved the oxidation of Sn-9Zn without any heat treatment. However, in the situation of the heat treatment at 120℃ in the air for 2hr, the oxide films on the surface were not easy formed to protect the base metal, the thickness of the oxide layer increased greatly. Because Ge segregated in the grain boundary and hindered the diffusion of Zn2+, the oxide layer was reactively thin. In the situation of the heat treatment at 120℃ in the air for 2hr, because the ZnO on the surface to protect the base metal, the thickness of the oxide layer didn’t increase.
On the respect of the solidify surface oxidation, the experimental results revealed that S9ZR, 0.4GaR, 0.4GeR which were reflowed at 260℃ for 15min and cooled at RT , 5 times, there were ZnO on the surface and no tin oxides. When solidifying, because the Ga was dissolved in both Sn and Zn phases and hindered the diffusion of ions of metals .It caused the time of forming the zinc oxides on the surface increased and the zinc oxides became thick. About the adding of Ge, because Ge was not dissolved in both Sn and Zn phases, the zinc oxides formed on the surface quickly, and after solidifying the Ge segregated in the grain boundary and hindered the diffusion of Zn2+, the oxide layer was thinner than S9ZR.
There was dynamic recrystalization phenomenon in the Sn-9Zn-xGa and Sn-9Zn-xGe tensile test at RT and 120℃. On the respect of tensile deformed resistance, because the solid solution effect, the tensile deformed resistance increased with increasing of Ga content at room temperature and the solid solution effect slight improved the tensile deformed resistance at high temperature (120℃). About the adding of Ge, because the Ge segregated in the grain boundary and the Ge phase improved the tensile deformed resistance but didn’t increase obviously with increasing Ge content. There was no help at all on tensile deformed resistance by adding Ge at high temperature (120℃).
1.S. S. Kang, and A. K. Sarkhel, “Lead Free Solders for Electronic Packaging”, Journal of Electronic Materials, Vol. 23, pp.701-707, 1994.
2.J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly”, Journal of Electronic Materials, Vol. 23, pp. 693-700, 1994.
3.張淑如,『鉛對人體的危害』,勞工安全衛生簡訊,第12期,17-18頁,民國84年。
4.賴玄金,『從IPC Work’99會議中看無鉛銲錫構裝之應用現況與發展趨勢』,工業材料,第158期,99-107頁,民國89年。
5.W. Yang, and R. W. Messler, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, Journal of Electronic Materials, Vol.23, pp.765-772, 1994.
6.H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. keer, and M. E. Fine, “Creep, Stress Relaxation, and Plastic Deformation in Sn-Ag and Sn-Zn Eutectic Solders”, Journal of Electronic Materials, Vol. 26, pp. 783-790, 1997.
7.M. McCormack, S. Jin, and G.W. Kammlott, proceedings of the 1995 IEEE International Symposium on Electronics and the Environment, ISEE, May 1-3 1995, Orlando. FL, USA , 171-176, 1995.
8.F. Hua, and J. Glazer, “Design & Reliability of Solders and Solder Interconnections”, TMS Annual Meeting, pp. 65-73, 1997.
9.S. Vaynman, and M. E. Fine, “Development of Fluxes for Lead-Free Solders Containing Zinc”, Scripta Materialia, Vol. 41, No. 12, pp. 1269-271, 1999.
10.McCormack, S. Jin, H. S. Chen, and D. A. Machusak , “New Lead-Free, Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, Vol.23, pp 687-690, 1994
11.Shohji, T. Nakamura, F. Mori, and S. Fujiuchi, “Interface Reaction and Mechanical Properties of Lead-Free Sn-Zn Alloy/Cu Joint”, Mater. Trans. 43, pp. 1797-1801, 2002.
12.K. L. Lin, and T. P. Liu, “High Temperature Oxidation of a Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 50, No. 3/4, pp.255-267, 1998.
13.T. Takemoto, T. Funaki, and A. Matsunawa, “Electrochemical Investigation on the Effect of Silver Addition on Wettability of Sn-Zn System Lead-Free Solder”, Journal of Japan Welding Society, Vol.17, pp 251-258, 1999.
14.C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “The Properties of Sn-9Zn Lead-Free Solder Alloys Doped with Trace Rare Earth Elements”, Journal of Electronic Materials, Vol.31, pp. 921-927, 2002.
15.C. M. L. Wu, D. Q. Yu, C. M. T Law, and L. Wang , “The Wettability and Microstructure of Sn-Zn-RE Alloys”, Journal of Electronic Materials Vol.32, pp. 63-69, 2003.
16.J. S. Hwang, Z. GuO, and H. Koenigsmann, “A High-Performance Lead-Free Solder—the Effects of In on 99.3Sn/0.7Cu”, Soldering and Surface Mount Technology, Vol.13, pp.7-13, 2001.
17.K. I. Chen., and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys—the Effect of Ag”, Journal of Electronic Materials, Vol.31, pp.861-867, 2002.
18.T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, “ Zn-Al-Mg-Ga Alloys as Pb-Free Solder for Die-Attaching Use”, Journal of Electronic Materials, Vol.28, pp.1172-1175, 1999.
19.K. Habu, Proceeding EcoDesign, 1st Inter. Sym. on Environmentally Conscious Design and Inverse Manufacturing, 606, l999.
20.M. Abtew, and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering, Vol. 27, pp. 95-141, 2000.
21.Artaki, and A. M. Jackson, “Evaluation of Lead-Free Solder Joints in Electronic Assemblies”, Journal of Electronic Materials, Vol.23, pp. 757-764, 1994.
22.ASM Handbook, ASM International, Matals Park, Ohio, Vol. 3, Alloy Phase Diagrams, 1992.
23.McCormack, S. Jin, “Design and Properties of New Pb-Free Solder Alloys”, Journal of Electronic Materials, Vol.23, No.7, pp. 635-640, 1994.
24.K. I. Chen, and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys—The Effect of Ga” , Journal of Electronic Materials, Vol. 32, No. 10, 2003.
25.SGTE Phase Diagram Collection http://www.met.kth.se/pd/element/Ga–Sn.html.
26.SGTE Phase Diagram Collection http://www.met.kth.se/pd/element/Ga–Zn.html.
27.SGTE Phase Diagram Collection http://www.met.kth.se/pd/element/Ge–Sn.html.
28.SGTE Phase Diagram Collection http://www.met.kth.se/pd/element/Ge–Zn.html.
29.B. T. Lampe, “Room Temperature Aging Properties of Some Solder Alloys”, Welding Res., Oct., pp.330s-340s, 1976.
30.莊強名,『無鉛化共晶銲錫合金之振動破壞特性研究』,國立成功大學材料科學及工程學系,博士論文,民國90年。
31.工程材料科學 (修訂版),劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,全華科技,民國80年,第16章。
32.金屬材料之高溫氧化與腐蝕,日本腐蝕防蝕學會,復漢出版社,民國77年,第2、3章。
33.Principles of Extractive Metallurgy, Terkel Rosenqvist, Mcgraw-Hill Book Company, 1974, Appendix C.
34.S. Vaynman, and M. E. Fine, “Development of Fluxes for Lead-Free Solders Containing Zinc”, Scripta Materialia, 1999, Vol. 41, pp. 1269-1271.
35.林麗娟,『微結構分析技術之介紹』,工業材料,第181期,73-79 頁,民國91年。
36.Handbook of X-ray Photoelectron Spectroscopy, J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Physical Electronics, Inc., 1995.
37.Handbook of X-ray Photoelectron Spectroscopy, C. D. Wanger, W. M.Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Perkin-Elmer Corporation, 1979, Data Interpretation.
38.M. Uo, A. Berglund, J. Cardensa, L. Pohl, F. Watari, M. Bergman, and S. Sjoberg, “Surface Analysis of Dental Amalgams by X-ray Photoelectron Spectroscopy and X-ray Diffraction”, Dental Materials, 19, pp.639-944, 2003.
39.Handbook of Monochromatic XPS Spectra, the Elements and Native Oxides, B.Vincent Crist, John Wiley &Sons, LTD, 2000.
40.K. S. Kim, T. Matsuura, and K. Syganumai, “Effects of Bi and Pb on Oxidation in Humidity for Low-Temperature Lead-Free Solder Systems”, Journal of Electronic Materials, Vol.35, No.1, 2006.
41.O. A. Kaibyshev, “Relationship between Mechanisms of Deformation and Development of Dynamic Recrystallization”, Recrystallization ’90, Warrendale, PA, Minerals, Metals, and Materials Society, pp.855-860, 1999.