簡易檢索 / 詳目顯示

研究生: 鄭欣彥
CHENG, HSIN-YEN
論文名稱: 以濺鍍技術製作太陽能選擇性吸收層之研究
Sputter Deposited Solar Selective Absorber Coatings
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 164
中文關鍵詞: 反應式磁控濺鍍鉻金屬含氫非晶碳薄膜鉑-氧化鋁薄膜太陽能選擇性吸收層
外文關鍵詞: Solar selective absorber coating, Chromium containing amorphous hydrogenated carbon thin films (a-C:H/Cr), Cermet structure, Pt-Al2O3 thin films, X-ray absorption spectroscopy (XAS)
相關次數: 點閱:165下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是研究以反應式磁控濺鍍方法來製備鉻金屬含氫非晶碳薄膜(a-C:H/Cr)以及以磁控共濺鍍方式製備瓷金結構鉑-氧化鋁薄膜(Pt- Al2O3)之太陽能選擇性吸收層。本論文分為三個部份,前兩部份針對a-C:H/Cr薄膜用於太陽能選擇性吸收層的材料特性與光學性質來進行討論。第三部份針對Pt- Al2O3薄膜用於太陽能選擇性吸收層的材料特性與光學性質來進行討論。
    本篇論文第一部份是以單一靶材鉻靶於濺鍍時通入反應氣體甲烷得到a-C:H/Cr薄膜,而第二部份是以雙靶材於濺鍍時通入反應氣體甲烷得到a-C:H/Cr薄膜。探討a-C:H/Cr薄膜之材料特性與光學性質的關係,再藉由X光吸收光譜來探討a-C:H/Cr薄膜光學吸收與電子結構相互躍遷的關係。研究中發現a-C:H/Cr薄膜的沉積過程具有三階段之成長機構,包含了金屬階段、過渡階段與反應階段。在材料特性方面藉由X光繞射儀對a-C:H/Cr薄膜進行結構分析,利用場發射掃描式電子顯微鏡以及場發射穿透式電子顯微鏡分別對a-C:H/Cr薄膜進行表面型態觀察與微觀結構的觀察,爾後利用 X光光電子能譜儀進行薄膜表面化學鍵結的分析,最後利用X光吸收光譜來探討a-C:H/Cr薄膜光學吸收與電子結構相互之間的關係。另外可由可靠度測試得知鉻金屬含氫非晶碳薄膜材料是一種對環境變化穩定的材料。本文第三部份則在探討瓷金結構之Pt-Al2O3薄膜用於太陽能選擇性吸收層上之材料與光學性質。

    In this thesis, we have investigated the chromium containing amorphous hydrogenated carbon (a-C:H/Cr) thin film and cermet structure Pt-Al2O3 thin film for use as solar selective absorber coatings. And also we have discussesed between the material analyses and optical properties. Three parts were separated in this thesis. The characteristics of a-C:H/Cr thin film were analysed in the former two parts. Furthermore, we discuess characteristic about the cermet structure Pt-Al2O3 thin film in the last part.

    中文摘要……………………………………………………………………………………………II 英文延伸摘要………………………………………………………………………………………III 致謝………………………………………………………………………………………………VII 總目次……………………………………………………………………………………………VIII 圖目次……………………………………………………………………………………………XIV 表目次……………………………………………………………………………………………XX 第一章 緒論……………………………………………………………………………………1 1-1前言……………………………………………………………………………………………1 1-2 商業之發展……………………………………………………………………………………3 1-2-1 國外發展現況……………………………………………………………………………3 1-2-2 國內發展現況……………………………………………………………………………4 第二章 理論與文獻回顧……………………………………………………………………………5 2-1太陽能集結器………………………………………………………………………………5 2-1-1集結器之種類……………………………………………………………………………5 2-1-1-1平板型太陽能集熱器…………………………………………………………………5 2-1-1-2真空管型太陽能集熱器………………………………………………………………5 2-1-1-3聚光型太陽能集熱器…………………………………………………………………6 2-1-2太陽能選擇性吸收層之原理及特性……………………………………………………8 2-1-2-1太陽能輻射波長之原理………………………………………………………………8 2-1-2-2太陽能選擇性吸收層之原理…………………………………………………………9 2-1-2-3太陽能選擇性吸收層表面之光學性質………………………………………………10 2-1-2-4太陽能選擇性吸收層表面之性質量測………………………………………………11 2-2太陽能選擇性吸收層之結構…………………………………………………………………12 2-2-1本質型吸收層(Intrinsic or “absorbers”)……………………………………………13 2-2-2半導體-金屬二元串聯(Semiconductor-metal tandem)………………………13 2-2-3多層吸收層(Multilayer absorbers)………………………………………………………13 2-2-4金屬-介電複合層鍍膜結構(Metal-dielectric composite coatings)………………………13 2-2-5紋理表面(Surface texturing)……………………………………………………………14 2-3反應式磁控濺鍍之介紹(Reactive magnetron sputtering, RMS)……………………………16 2-4金屬-介電複合層鍍膜結構(Metal-dielectric composite coatings)…………………………19 2-4-1 Ni-Al2O3…………………………………………………………………………………22 2-4-2 Cr-Cr2O3…………………………………………………………………………………22 2-4-3 Mo-Al2O3…………………………………………………………………………………22 2-4-4 Au-MgO………………………………………………………………………………………23 2-4-5 Co-Al2O3…………………………………………………………………………………23 2-4-6 Mo-SiO2……………………………………………………………………………………23 2-5金屬含氫非晶碳薄膜 (Metal containing amorphous hydrogen carbon thin films, a-C:H/Me)……………………………………………25 2-5-1含氫非晶碳薄膜(a-C:H)………………………………………………………25 2-5-2類鑽碳薄膜拉曼光譜(Raman spectroscopy)之探討………………26 2-5-3鉻金屬含氫非晶碳薄膜(Chromium containing amorphous hydrogenated carbon thin film, a-C:H/Cr)……………30 2-5-4鈦金屬含氫非晶碳薄膜 (Titanium containing amorphous hydrogenated carbon thin film, a-C:H/Ti)……………30 2-5-5鈦金屬含氫非晶矽碳薄膜 (Titanium containing amorphous hydrogenated silicon carbon thin film, a-Si:C:H/Ti)……………31 2-6鉑-氧化鋁瓷金結構 (Pt-Al2O3 cermet structure)……………………………32 2-7吸收光譜理論…………………………………………………………………………………………………………………………………………………34 2-7-1 X光與物質…………………………………………………………………………………………………………………34 2-7-2 X光吸收近邊緣結構(XANES)原理……………………………………………………………………36 2-7-3 X光吸收光譜之測量方法………………………………………………………………………………………38 2-7-4 X光吸收光譜在金屬含氫非晶碳薄膜之應用……………………………………………………39 2-8研究動機與目的………………………………………………………………………………………………………………41 第三章 實驗設計與儀器設備介紹……………………………………………………………………………………42 3-1概述……………………………………………………………………………………………………………………………………42 3-2鉻金屬含氫非晶碳薄膜(a-C:H/Cr)太陽能選擇性吸收層之製備…………………42 3-2-1 反應式磁控濺鍍沉積系統 (Reactive Magnetron Sputter Deposition System)………………………………………………………………………………………………………42 3-2-2實驗流程………………………………………………………………………………………………………………………43 3-2-2-1實驗材料之選擇……………………………………………………………………………………………………43 3-2-2-2基板清洗步驟…………………………………………………………………………………………………………44 3-2-2-3 薄膜濺鍍之參數…………………………………………………………………………………………………46 3-2-2-4 太陽能選擇性吸收層結構之設計…………………………………………………………………48 3-3材料分析……………………………………………………………………………………………………………………………49 3-3-1 場發射掃描式電子顯微鏡 (FE-SE)………………………………………………………………51 3-3-2 低掠角X光繞射儀 (GIXRD)………………………………………………………………………………51 3-3-3 拉曼光譜分析 (Raman Spectroscopy)…………………………………………………51 3-3-4 場發射穿透式電子顯微鏡 (FE-XTEM)…………………………………………………………51 3-3-5 X光光電子能譜 (XPS)………………………………………………………………………………………52 3-3-6縱深歐傑電子能譜 (DP-AES)……………………………………………………………………………52 3-3-7二次離子質譜儀 (SIMS)………………………………………………………………………………………52 3-3-8 X光近緣結構 (XANES)………………………………………………………………………………………53 3-4光學分析……………………………………………………………………………………………………………………………54 3-4-1紫外線/可見光分光光譜儀 (UV/VIS/NIR Spectrometers)………………………………………………………………………………………………………………………………………………………54 3-4-2傅立葉轉換紅外線光譜儀 (FTIR)………………………………………………………………………55 第四章 鉻金屬含氫非晶碳薄膜太陽能選擇性吸收層之製備………………………………………56 4-1單一靶材濺鍍沉積鉻金屬含氫非晶碳薄膜太陽能選擇性吸收層之探討……………56 4-1-1單一濃度---材料與光學性質之探討……………………………………………………………………56 4-1-1-1沉積速率………………………………………………………………………………………………………………56 4-1-1-2 薄膜之組成…………………………………………………………………………………………………………58 4-1-1-3薄膜之結構………………………………………………………………………………………………………………61 4-1-1-3-1 pure Cr薄膜之結構…………………………………………………………………………………61 4-1-1-3-2鉻金屬含氫非晶碳薄膜之結構……………………………………………………………………62 4-1-1-4薄膜之光學吸收………………………………………………………………………………………………………71 4-1-1-5材料結構變化對光學吸收之影響………………………………………………………………………73 4-1-1-6薄膜表面粗糙度變化對光學吸收之影響…………………………………………………………77 4-1-1-7薄膜表面化學鍵結對光學吸收之影響………………………………………………………………80 4-1-2漸變式濃度---材料與光學性質之探討…………………………………………………………………86 4-1-2-1薄膜之組成……………………………………………………………………………………………………………86 4-1-2-2漸變式濃度的結構變化對光學吸收之影響………………………………………………………93 4-1-3可靠度測試與光學性質之探討…………………………………………………………………………………93 4-1-4 X光吸收光譜與光學性質之探討……………………………………………………………………………96 4-1-4-1 Cr L3,2-edge……………………………………………………………………………………………………96 4-1-4-2 C K-edge……………………………………………………………………………………………………………98 4-1-4-3 Cr K-edge…………………………………………………………………………………………………………102 4-1-5總結……………………………………………………………………………………………………………………………104 4-2雙靶反應式磁控共濺鍍沉積鉻金屬含氫非晶碳薄膜太陽能選擇性吸收層之探討…………………………………………………………………………………………………………………………………………………105 4-2-1共濺鍍薄膜之沉積速率………………………………………………………………105 4-2-2共濺鍍薄膜之組成……………………………………………………………………107 4-2-3共濺鍍薄膜之結構……………………………………………………………………109 4-2-4共濺鍍薄膜之光學吸收………………………………………………………………121 4-2-5材料結構變化對光學吸收之影響……………………………………………………123 4-2-6粗糙度變化對光學吸收之影響………………………………………………………124 4-2-7化學鍵結變化對光學吸收之影響……………………………………………………127 4-2-8總結……………………………………………………………………………………132 第五章 瓷金結構之鉑-氧化鋁薄膜太陽能選擇性吸收層之製備……………………………133 5-1瓷金結構之鉑-氧化鋁薄膜用於太陽能選擇性吸收層之探討……………………………133 5-1-1薄膜之沉積速率………………………………………………………………………133 5-1-2薄膜之組成……………………………………………………………………………135 5-1-3薄膜之結構……………………………………………………………………………136 5-1-4不連續鍍膜之薄膜結構………………………………………………………………143 5-1-5瓷金結構Pt-Al2O3薄膜之光學吸收……………………………………………………148 5-1-6材料結構變化對光學吸收之影響……………………………………………………149 5-1-7薄膜表面化學鍵結對光學吸收之影響………………………………………………150 5-1-8總結……………………………………………………………………………………155 第六章 參考文獻…………………………………………………………………………………156 第七章 未來方向…………………………………………………………………………………164

    [1]B.O. Seraphin, Solar Energy Conversion: Solid State Physics Aspects, in: Topics in Applied Physics, vol. 31, Springer, Berlin, 1979, pp. 24–35 R. Kötz, M. Carlen, Electrochim. Acta 45 2483-2498 (2000).
    [2]A. Schuler, J. Geng, P. Oelhafen, S. Brunold, P. Gantenbein, U. Frei, Sol. Energy Mater. Sol. Cells 60 (2000) 295.
    [3]2007年能源科技研究發展白皮書
    [4]http://www.solarpower-house.net/solar-hot-water-panels/solar-hot-water-panels
    [5http://www.daviddarling.info/encyclopedia/E/AE_evacuated_tube_collector.html
    [6]http://asolarheater.net/1451-concentrated-solar-collector-best-solar-water-heater.html
    [7]B. Lee, The progress and prospect of middle/ high temperature evacuated tubular solar collector, Renew. Energy 24 (2001) 539.
    [8]S. Zhao, E. Wackelgard, Sol. Energy Mater. Sol. Cells 90 (2006) 243.
    [9]Q. C. Zhang, Sol. Energy Mater. Sol. Cells 62 (2000) 63.
    [10]N.C Bhowmik, J Rahman, M.A Alam Khan, Z.H Mazumder, Renew. Energy 24 (2001) 663.
    [11]J. A. Thornton, J. L. Lamb and A. S. Penfold,“Development of Selective Surface” Final Report, Contract DE-AC04-78CS35306, U. S. D. O. E. (Aug. 1980).
    [12]H. S. Potdar, N. Pavaskar, A. Mitra, A. P. B. Sinha, Sol. Energy Mater. 4 (1981) 291.
    [13]A. Aveline and I. R. Bonilla, Sol. Energy Mater. 5 (1981) 211.
    [14]G. Makiwa, G. Katumbab, L. Olumekora, Proc. of SPIE 7046 (2008) 70460A-1.
    [15]C.E. Kennedy, Review of mid-to high-temperature solar selective absorber materials, Golden CO, U.S., NREL TP-520-31267, 2002.
    [16]I. Safi, Surf. Coat. Tech. 127 ( 2000) 203.
    [17]S. Berg, T. Nyberg, Thin Solid Films 476 (2005) 215.
    [18]S. Kadlec, J Musil and H VyskoEil, J. Phys. D: Appl. Phys. 19 (1986) L187.
    [19]S. Schiller, G. Beister and W. Sieber, Thin Solid Films 111 (1984) 259.
    [20]D. K. Hohnke, D. J. Schmatz and M. D. Hurley, Thin Solid Films 118 (1984) 301.
    [21]S. Zhao, Spectrally Selective Solar Absorbing Coatings Prepared by dc Magnetron Sputtering, Acta Universitatis Upsaliensis Uppsala 2007.
    [22]Optical Properties of Metal Clusters, edited by Kreibig, U., Vollmer, M., Springer- Verlag, New York, 1995.
    [23]J. C. Maxwell Garnett, Phil. Trans. R. Soc. Lond. A 203 (1904) 385.
    [24]G. L. Hornyak, C. J. Patrissi, and C. R. Martin, J. Phys. Chem. B 101 (1997) 1548.
    [25]D. A. G. Bruggeman, Ann. Phys.-Berlin 416 (1935) 636.
    [26]P. Richharia and K. L. Chopra, Jpn. J. Appl. Phys. 30 (1991) 3425.
    [27]D. M. Trotter, Jr., and A. J. Sievers, Appl. Optics 19 (1980) 711.
    [28]T. S. Sathiaraj, R. Thangaraj and O.P. Agnihotri, Sol. Energy Mater. 18 (1989) 343.
    [29]T. S. Sathiaraj, R. Thangaraj and O.P. Agnihotri, J. Phys. D: Appl. Phys. 23 (1990) 250.
    [30]J. C. C. Fan and S. A. Spura, Appl. Phys. Lett. 30 (1977) 511.
    [31]J. Vaidyanathaiyer, S. B. Gadgil, A. K. Sharma, B. K. Gupta and O. P. Agnihotri, Sol. Energy Mater. 6 (1981) 113.
    [32]Q. C. Zhang, Y. Yin, D. R. Mills, Sol. Energy Mater. Sol. Cells 40 (1996) 43.
    [33]C. Nunes, V. Teixeira, M. C. Pereira, A. Monteiro, E. Roman, J. M. Gago, Vacuum 67 (2002) 623.
    [34]D. Xinkang, W. Cong, W. Tianmin, Z. Long, C. Buliang, R. Ning, Thin Solid Films 516 (2008) 3971.
    [35]J. C. C. Fan and P. M. Zavracky, Appl. Phys. Lett. 29 (1976) 478.
    [36]G. A. Niklasson and C. G. Granqvist, J. Appl. Phys. 55 (1984) 3382.
    [37]J. Wang, B. Wei, Q. Wei, and D. Li, Phys. Status Solidi. A 208 (2011) 664.
    [38]D. R. McKenzie, Appl. Phys. Lett. 34 (1979) 25.
    [39]D. R. McKenzie, Thin Solid Films 62 (1919) 317.
    [40]G. L. Harding, Sol. Energy Mater. 7 (1982) 123.
    [41]M. Oguyama, K. Furuswat and Y. Hamakawa, Sol. Energy 22 (1979) 479.
    [42]D. R. McKenzie, D. Muller, and B. A. Pailthorpe, Phys. Rev. Lett. 67 (1991) 773.
    [43]Amorphous Carbon: State of the art, edited by T. Frauenheim, J. Jungnickel, T. Koehler, P. Sitch, and P. Blaudeck, pp. 59-72, World Scientific, Singapore, 1998.
    [44]S. Aisenberg and R. Chabot, J. Appl. Phys. 42 (1971) 2953.
    [45]J. Robertson, Mater. Sci. Eng. Rep. 37 (2002) 129.
    [46]C. Casiraghi, A. C. Ferrari, and J. Robertson, Phys. Rev. B 72 (2005) 085401.
    [47]Handbook of Nanostructured Thin Films and Coatings: Mechanical Properties, edited by Sam Zhang, CRC Press, 2010.
    [48]D. Franta, D. Nečas, L. Zajíčková, V. Buršíková, Diam. Relat. Mat. 18 (2009) 413.
    [49]J. Robertson, E. P. O'Reilly, Phys. Rev. B 35 (1987) 2946.
    [50]A. C. Ferrari, Diam. Relat. Mat. 11 (2002) 1053.
    [51]N. Paik, Surf. Coat. Tech. 200 (2005) 2170.
    [52]Handbook of thin film materials, edited by Hari Singh Nalwa, 2002.
    [53]H. C. Tsai, D. B Bogy, M. K. Kundmann, D. K. Veirs, M. R. Hilton, S. T. Mayer, J. Vac. Sci. Technol. A 6 (1988) 2307.
    [54]M. A. Tamor and W. C. Vassell, J. Appl. Phys. 76 (1994) 3823.
    [55]W. Y. Wu, J. M. Ting, Chem. Phys. Lett. 388 (2004) 312.
    [56]W.Y. Wu, J.M. Ting, Z. Hayo, L. Dominika, G. Inga, R. Carsten, H. Hans, Diam. Relat. Mat. 17 (2008) 1494.
    [57]W. Y. Wu, J. M. Ting, Carbon 44 (2006) 1210.
    [58]R. Gampp, P. Gantenbein, Y. Kuster, P. Reimann, R. Steiner, P. Oelhafen, SPIE 2255 93.
    [59]R. Gampp, P. Oelhafen, P. Gantenbein, S. Brunold, U. Frei, Sol. Energy Mater. Sol. Cells 54 (1998) 369.
    [60]P. Oelhafen, A. Schuler, Sol. Energy 79 (2005) 110.
    [61]A. Schüler, I. R. Videnovic, P. Oelhafen, S. Brunold, Sol. Energy Mater. Sol. Cells 69 (2001) 271.
    [62]H. G. Craighead, R. Bartynski and R. A. Buhrman, Sol. Energy Mater. 1 (1979) 105.
    [63]J. A. Thornton and J. L. Lamb, Thin Solid Films 83 (1981) 377.
    [64]J. A. Thornton and J. L. Lamb, Thin Solid Films 96 (1982) 175.
    [65]T. K. Vien, C. Sella, J. Lafait and S. Berthier, Thin Solid Films 126 (1985) 17.
    [66]X-Ray Absorption : Principles, Application, Techniques of EXAFS, SEXAFS, SEXAFS and XANES, edited by D. C. Koningsberger, and R. Prins, Chem. Analysis, 92 (Wiley 1988).
    [67]D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev. Lett. 27 (1971) 1024.
    [68]Synchrotron Radiation Research, edited by H. Winick, S. Doniach (1980).
    [69]NEXAFS Spectroscopy, edited by Joachim Stöhr (Springer- Verlag, New York, 1992).
    [70]E. A. Stern, M. Newville, B. Ravel, Y. Yaceby, and D. Haskel, Phys. B. 208&209 (1995) 117.
    [71]EXAFS and Near edge Structure, edited by A. Bianconi, L. Incoccia and S. Stipcich (Springer-Verlay 1983).
    [72]Introduction to Semiconductor Manufacturing Technology, edited by Hong Xiao, (Prentice Hall 2001)
    [73]S.C. Chung, C.I. Chen, P.C. Tseng, H.F. Lin, T.E. Dann et al., Rev. Sci. Instrum. 66 (1995) 1655.
    [74]W. Y. Wu, J. M. Ting, J. Nanosci. Nano Techno. 8 (2008) 2623.
    [75]H. J. Li, Deposition of Pt/C thin film, NCKU (2001)
    [76]Physical Metallurgy Principles, edited by Reed-Hill Abbaschian, (Third Edition)
    [77]E. Nishida and K. Kimoto, Thin Solid Films 23 (1974) 179.
    [78]E. Bouzy, E. B. Grosse, G. LeCaer, Philos. Mag. Part B 68B (1993) 619.
    [79]H. McMurdie et al., powder diffraction 1 89 (1986).
    [80]Optical Properties of Solids, edited by Mark Fox (Oxford University Press) 2001.
    [81]Thin Film Optics and Coating Technology, edited by Cheng-Chung Lee (Sixth Edition) 2009.
    [82]S. K. Ghosh, and T. Pal, Chem. Rev. 107 (2007) 4797.
    [83]S. Zhao, E. Wackelgard, Sol. Energy Mater. Sol. Cells 90 (2006) 1861.
    [84]C.A. A. Bulnes, C.A. Estrada, J.C. R. Suárez, J. Phys. D Appl. Phys. 33 (2000) 2489.
    [85]Optical Properties of Solids: New Developments, edited by B. O. Seraphin (Chap. 17) 1976.
    [86]Solar Selective Surfaces, editor by O.P. Agnihotri and B. K. Gupta (Wiley Alternate Energy Series) 1939.
    [87]Self-assembled, Alternating Nano-layered Metal-containing Amorphous Carbon Thin Films: from Random Structures to Self-assembled, Alternating Nano-layered Structures, Department of Materials Science and Engineering, editor by Wan-Yu Wu.
    [88]C. Corbella, G. Oncins, M. A. Gomez, et.al, Diam. Relat. Mater. 14 (2005) 1103.
    [89]C. Corbella, M.Vives, A. Pinyol, E. Bertran, et. al, Surf. Coat. Technol. 177-178 (2004) 409.
    [90]X. L. Peng, Z. H. Barver, T. W. Clyne, Surf. Coat. Technol. 138 (2001) 23.
    [91]Handbook of X-ray Photoelectron, editor by J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Physical Electronics (1995)
    [92]http://www.lasurface.com/database/index.php
    [93]V. Singh, J. C. Jiang, E. I. Meletis, Thin Solid Films 489 (2005) 150.
    [94]S. Delpeux, F. Beguin, R. Benoit, R. Erre, N. Manolova, I. Rashkov, Eur. Polym. J. 34 (1998) 905.
    [95]D. Rats, J. Sevely, L. Vandenbulcke, R. Benoit, R. Erre, R. Herbin, V. Serin, Thin Solid Films 270 (1995) 177.
    [96]S.G. Zotova, R. G. Vitchev and B. Blanpain, Surf. Interface Anal. 30 (2000) 544.
    [97]B.F. Dzhurinskii, D. Gati, N.P. Sergushin, V.I. Nefedov, YA. V. Salyn, Russ. J. Inorg. Chem. 20 (1975) 2307.
    [98]B. Stypula, J. Stoch, Corrosion Sci. 36 (1994) 2159.
    [99]M. Andersson, J. Högström, S, Urbonaite, A. Furlan, L. Nyholm, U. Jansson, Vacuum 86 (2012) 1408.
    [100]M. Magnuson, M. Andersson, J. Lu, L. Hultman and U. Jansson, J. Phys.: Condens. Matter 24(2012) 225004.
    [101]H. M. Li, G. Zhang, C. Yang, D. Y. Lee et al. J. Appl. Phys. 109 (2011) 093516.
    [102]S.X. Zhao, Spectrally selective solar absorbing coatings prepared by dc magnetron sputtering, NREL 2002, Acta Universitatis Upsaliensis Uppsala, PhD thesis, 2007.
    [103]A.R. Shashikala, A.K. Sharma, D.R. Bhandari, Sol. Energy Mater. Sol. Cells 91 (2007) 629.
    [104]V. Saxena, R.U. Rani, A.K. Sharma, Surf. Coat. Technol. 201 (2006) 855.
    [105]G. V. D. Laan, I.W. Kirkman, J. Phys. Condens. Matter. 4 (1992) 4189.
    [106]J.W. Chiou, S.Y. Chang, W.H. Huang, Y.T. Chen, C.W. Hsu, Y.M. Hu, et al. Appl. Surf. Sci. 257 (2011) 4863.
    [107]Y.K. Chang, H.H. Hsieh, W.F. Pong, M.H. Tsai, K.H. Lee, T.E. Dann, et al. Phys. Rev. B 58 (1998) 9018.
    [108]N. Benchikh, F. Garrelie, C. Donnet, B. B. Fabre, K. Wolski, et al. Thin Solid Films 482 (2005) 287.
    [109]J. Kikuma, B.P. Tonner, J. Electron. Spectrosc. Relat. Phenom. 82 (1996) 53.
    [110]M. Clin, O. D. Drouhin, A. Zeinert, J.C. Picot, Diam. Relat. Mat. 8 (1999) 527.
    [111]W.H. Huang, S.J. Sun, J.W. Chiou, H. Chou, T.S. Chan, H.J. Lin, et al., J. Appl. Phys. 110 (2011) 103705.
    [112]M. Gaidi, A. Hajjaji, R. Smirani, B. Bessais, and M. A. E. Khakani, J. Appl. Phys. 108 (2010) 063537.
    [113]Y.H. Liou, W.F. Pong, M.H. Tsai, K.H. Chang, H.H. Hseih, Y.K. Chang, et al., Phys. Rev. B 62 (2000) 9616.
    [114]M. Yasir, Synthesis and Structural Characterization of Metal-Doped Titanate Nanotubes Using TEM, XRD and XAS, Department of Synchrotron Instrumentation, Master’s thesis, 2011.
    [115]K. Kim, M. Park, W. Lee, H. W. Kim, J. G. Lee and C. Lee, Mater. Sci. Tech. 24 (2008) 838.
    [116]G. Gassner, P. H. Mayrhofer, C. Mitterer, J. Kiefer, Surf. Coat. Technol. 200 (2005) 1147.
    [117]A. C. Ferrari and J. Robertson, Phys. Rev. B 63 (2001) 121405(R).
    [118]H. Kuzmany, R. Pfeioffer, N. Salk, B. Gunther, Carbon 42 (2004) 911.
    [119]L. Yate, L. M. D. Olcoz, J. Esteve, A. Lousa, Surf. Coat. Technol. 206 (2012) 2877.
    [120]N. Li, J.P. Allain, D.N. Ruzic, Surf. Coat. Technol. 149 (2002) 161.
    [121]S. Nakao, P. Jin, G. Xu, M. Ikeyama, Y. Miyagawa, S. Miyagawa, J. Cryst. Growth 237-239 (2002) 580.
    [122]W. Qin, J.A. Szpunar, Y. Umakoshi, Acta. Mater. 59 (2011) 2221.
    [123]J. Murray, K. Song, W. Huebner, M. O. Keefe, Mater. Let. 74 (2012) 12.
    [124]Physical vapor deposition, editor by R. J. Hill, in, 2nd ed (1985).
    [125]G. L. Dia, The study of UV thin film prepared reactive by RF magnetic controlled sputtering with IAD, Optics and Photonics, Master (2001).
    [126]N. R. Rajopadhye, S. B. Dake and S. V. Bhoraskar, Thin Solid Films 142 (1986) 127.
    [127]NIST X-ray Photoelectron Spectroscopy Database, Version 3.5, National Institute of Standards and Technology, Gaithersburg, 2003.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE