| 研究生: |
朱崇銳 Chu, Chung-Ray |
|---|---|
| 論文名稱: |
光纖土石流震動監測系統之研發 Development of a fiber-optic sensing system for monitoring ground vibrations produced by debris flows |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 土石流 、光纖監測系統 、光纖布拉格光柵 、地聲檢知器 、地表震動 |
| 外文關鍵詞: | debris flows, fiber-optic sensing system, fiber Bragg grating, FBG, geophone, ground vibration |
| 相關次數: | 點閱:135 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究欲改善傳統土石流監測中地聲檢知器 (geophone) 量測土石流地表震動之不足,藉由光纖系統之敏感度高、傳輸損耗低、抗外部電磁雜訊強之優勢,克服地聲檢知器監測範圍太小、訊號品質不佳之缺失。本研究結合光纖光柵加速度計、解調儀、及其他光纖元件,發展一套可偵測土石流地表震動之光纖監測系統。現地模擬土石流實驗之量測結果顯示,與目前常用的地聲檢知器系統、麥克風監測系統相較,光纖加速度計所測得地表震動訊號之訊雜比較地聲檢知器高10 dB;頻域部分,10 – 30 Hz頻段光纖加速度計與地聲檢知器量測訊雜比相當,30 – 250 Hz頻段光纖加速度計比地聲檢知器高10 dB;麥克風則容易受環境噪音影響,導致量測訊雜比最差。現地光纖監測系統架設於南投縣信義鄉神木村愛玉子溪,系統光迴路分別採用並聯與串聯方式,沿河岸埋設四組光纖加速度計,並於2012、2013年監測到多場土石流。量測結果顯示,並聯迴路分光後光強度不足,串聯迴路並無此問題。光纖監測系統所測得土石流地表震動加速度訊號頻率範圍為10 – 150 Hz,與文獻結果一致。訊號中可分辯礫石撞擊河床之暫態訊號與礫石磨擦河床之連續訊號,撞擊訊號頻率在50 Hz以下;磨擦訊號頻率在10 – 150 Hz之間。5/19/2013土石流量測結果顯示,該土石流流速約4.18 m/s,與2004年敏督利颱風在愛玉子溪造成之土石流流速13.3 m/s不同,證實2009年莫拉克颱風破壞原有河道後導致土石流流況改變,亦使得土石流至下游後,地表震動訊號也不存在典型三角形波形。由量測結果可估算出光纖加速度計偵測範圍為150 – 230 m,可提前約40 s測得土石流前端訊號,此估算值與埋設位置點及周圍土體材料有關。光纖加速度計與地聲檢知器量測結果比對可知,光纖系統數據品質較佳、雜訊較少,不需經過濾波,原始訊號即可完整量測土石流訊號。
This study presents a fiber-optic sensing system for measuring the ground vibration produced by debris flows. The system comprises a demodulator and four fiber Bragg grating (FBG) accelerometers. The field tests showed that the signal-to-noise-ratio (SNR) of FBG accelerometer was 10 dB higher than that of the geophone. The frequency analysis indicates that in the lower frequency range, 10 – 30 Hz, Fiber Bragg Grating (FBG) accelerometer had approximately the same SNR as geophone; however in the higher frequency range, 30 – 250 Hz, FBG accelerometer had 10 dB higher SNR than geophone. Geophone was commonly used as a device to measure the ground vibration generated by debris flows, but the quality of the detected data is difficult to control because of its low signal-to-noise-ratio (SNR). Following confirmation of the reliability of the proposed sensing system, the system is deployed along the Ai-Yu-Zi Creek in Nautou County, Taiwan, for monitoring debris flows. The optic circuits in parallel and in series construction were individually tested to monitor real debris flows. The series construction is suitable for the deployment of multiple sensors along one creek.
The system have detected several debris flows in 2012 and 2013. The monitored data revealed that the frequency range of the acceleration signal of ground vibration was 10 – 150 Hz, which is the same as that of the velocity signal of ground vibration detected by geophone. Ground vibrations result from the hitting of rocks against riverbed and from the rubbing of rocks along the riverbed can be identified from the time series data. The frequency range of the former one is below 50 Hz, while the latter one is 10 – 150 Hz. The estimated speed of debris flow occurred on May 19, 2013 was 4.18 m/s, which is much lower than that of a previous debris flow occurred at the same creek in 2004 with a speed of 13.3 m/s. In addition, the waveforms of ground vibration signals produced by the detected debris flows were different from a triangular shape, which was recognized as a typical signal form for a well-developed debris flow. The ground vibration signals of the previous debris flow in 2004 also showed this characteristic waveform. The reasons for causing the difference in the signal shape may be the following. The rheological behavior of debris flows has been changed because the channel of Ai-Yu-Zi Creek was broaden by a serious debris flow occurred during the period of typhoon Morakot in 2009. The monitored data demonstrate that the detection range of FBG accelerometer for monitoring debris flows is 150 – 230 m, and debris flows can be detected about 40 s earlier before the surge of debris flow reaches the sensor. The quality of the monitored signals depends on the installation location and the material of the creek bed. The performances of geophone and FBG accelerometer were discussed by comparing the monitored data from the same debris flows. The comparison suggests that the FBG accelerometer has better data quality, lower noises than geophone, and the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations.
[1] Arattano, M. (1999). "On the use of seismic detectors as monitoring and warning systems for debris flows." Nat. Hazards, 20(2-3), 197-213.
[2] Arattano, M. (2000). "On debris flow front evolution along a torrent." Phys. Chem. Earth Pt. B, 25(9), 733-740.
[3] Arattano, M. (2003). "Monitoring the presence of the debris-flow front and its velocity through ground vibration detectors." Proc., Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings of the Third International Conference on Debris-Flow Hazards Mitigation, Davos, Switzerland, Millpress, 719-730.
[4] Arattano, M., and Marchi, L. (2005). "Measurements of debris flow velocity through cross-correlation of instrumentation data." Nat. Hazards Earth Syst. Sci., 5(1), 137-142.
[5] Arattano, M., and Marchi, L. (2008). "Systems and sensors for debris-flow monitoring and warning." Sensors, 8(4), 2436-2452.
[6] Arattano, M., Marchi, L., and Cavalli, M. (2012). "Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings." Nat. Hazards Earth Syst. Sci., 12(3), 679-686.
[7] Baldwin, C., Niemczuk, J., Kiddy, J., and Salter, T. (2005). "Review of fiber optic accelerometers." 23rd IMAC Conference Exposition on Structural Dynamics.
[8] Berkoff, T. A., and Kersey, A. D. (1996). "Experimental demonstration of a fiber Bragg grating accelerometer." IEEE Photon. Technol. Lett., 8(12), 1677-1679.
[9] Berti, M., Genevois, R., LaHusen, R., Simoni, A., and Tecca, P. R. (2000). "Debris flow monitoring in the Acquabona watershed on the Dolomites (Italian Alps)." Phys. Chem. Earth Pt. B, 25(9), 707-715.
[10] Berti, M., Genevois, R., Simoni, A., and Tecca, P. R. (1999). "Field observations of a debris flow event in the Dolomites." Geomorphology, 29(3-4), 265-274.
[11] Biot, M. A. (1956a). "Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range." J. Acoust. Soc. Am., 28(2), 168-178.
[12] Biot, M. A. (1956b). "Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range." J. Acoust. Soc. Am., 28(2), 179-191.
[13] Biot, M. A. (1962). "Generalized Theory of Acoustic Propagation in Porous Dissipative Media." J. Acoust. Soc. Am., 34(9A), 1254-1264.
[14] Bolt, B. A. (1978). Earthquakes, W. H. Freeman and Company.
[15] Bullock, D. E., Dunphy, J. R., and Hufstetler, G. H. "Embedded Bragg grating fiber optic sensor for composite flexbeams." Proc., SPIE Fiber Optic Smart Structures and Skins, 253.
[16] Burtin, A., Bollinger, L., Cattin, R., Vergne, J., and Nabelek, J. L. (2009). "Spatiotemporal sequence of Himalayan debris flow from analysis of high-frequency seismic noise." J. Geophys. Res.-Earth, 114.
[17] Burtin, A., Vergne, J., Rivera, L., and Dubernet, P. (2010). "Location of river-induced seismic signal from noise correlation functions." Geophys. J. Int., 182(3), 1161-1173.
[18] Cooley, J. W., and Tukey, J. W. (1965). "An Algorithm for Machine Calculation of Complex Fourier Series." Math Comput, 19(90), 297-&.
[19] Duffy, J., and Mindlin, R. D. (1957). "Stress-strain relations and vibrationsof a granular medium." J. Appl. Mech., ASME, 24, 585-601.
[20] Friedlander, B., and Porat, B. (1989). "Detection of transient signals by the Gabor representation." IEEE Trans. Acoust. Speech Signal Process, 37(2), 169-180.
[21] Friedlander, B., and Zeira, A. (1995). "Oversampled Gabor representation for trainsent signals." IEEE Trans. Signal Process, 43(9), 2088-2094.
[22] Fung, Y. C. (1965). Foundations of solid mechanics, Prentice-Hall.
[23] Gabor, D. (1946). "Theory of communication." J.I.E.E., 93, 429-459.
[24] Galgaro, A., Tecca, P. R., Genevois, R., and Deganutti, A. M. (2005). "Acoustic module of the Acquabona (Italy) debris flow monitoring system." Nat. Hazards Earth Syst. Sci., 5(2), 211-215.
[25] Gassmann, F. (1951a). "Elastic waves through a packing of spheres." Geophysics, 16(4), 673-685.
[26] Gassmann, F. (1951b). "Über die Elastizität poröser Medien." Viertel. Naturforsch. Ges. Zürich, 96, 1-23.
[27] Hürlimann, M., Abancó, C., Moya, J., Raïmat, C., and Luis-Fonseca, R. (2011). "Debris-flow monitoring stations in the Eastern Pyrenees. Description of instrumentation, first experiences and preliminary results." 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, R. Genevois, D. L. Hamilton, and A. Prestininzi, eds.Casa Editrice Università La Sapienza, Roma, 553-562.
[28] Hürlimann, M., Rickenmann, D., and Graf, C. (2003). "Field and monitoring data of debris-flow events in the Swiss Alps." Can. Geotech. J., 40(1), 161-175.
[29] Hill, K. O., Fujii, Y., Johnson, D. C., and Kawasaki, B. S. (1978). "Photosensitivity in optical fiber waveguides - application to reflection filter fabrication." Appl. Phys. Lett., 32(10), 647-649.
[30] Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C., and Albert, J. (1993). "Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask." Appl. Phys. Lett., 62(10), 1035-1037.
[31] Huang, C. J., Chu, C. R., Tien, T. M., Yin, H. Y., and Chen, P. S. (2012). "Calibration and deployment of a fiber-optic sensing system for monitoring debris flows." Sensors, 12(5), 5835-5849.
[32] Huang, C. J., Shieh, C. L., and Yin, H. Y. (2004). "Laboratory study of the underground sound generated by debris flows." J. Geophys. Res.-Earth, 109(F1).
[33] Huang, C. J., Yeh, C. H., Chen, C. Y., and Chang, S. T. (2008). "Ground vibrations and airborne sounds generated by motion of rock in a river bed." Nat. Hazards Earth Syst. Sci., 8(6), 1139-1147.
[34] Huang, C. J., Yin, H. Y., Chen, C. Y., Yeh, C. H., and Wang, C. L. (2007). "Ground vibrations produced by rock motions and debris flows." J. Geophys. Res.-Earth, 112(F2).
[35] Itakura, Y., Inaba, H., and Sawada, T. (2005). "A debris-flow monitoring devices and methods bibliography." Nat. Hazards Earth Syst. Sci., 5(6), 971-977.
[36] Itakura, Y., Koga, Y., Takahama, J. I., and Nowa, Y. (1997). "Acoustic detection sensor for debris flow, in Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment." Proc., Proceedings of the First International Conference, Am. Soc. of Civ. Eng., 747-756.
[37] Iverson, R. M., Reid, M. E., and LaHusen, R. G. (1997). "Debris-flow mobilization from landslides." Annu. Rev. Earth Pl. Sc., 25, 85-138.
[38] Johnson, A. M., and Rodine, J. R. (1984). "Debris flows." Slope Instability, D. Brunsden, and D. B. Prior, eds., John Wiley & Sons. Ltd., 257-361.
[39] Kersey, A. D. (1997). "Multiplexing Techniques for Fiber-Optic Sensors." Optical fiber sensors: applications, analysis, and future trends, J. Dakin, and B. Culshaw, eds., 369-407.
[40] Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., Putnam, M. A., and Friebele, E. J. (1997). "Fiber grating sensors." J. Lightwave Technol., 15(8), 1442-1463.
[41] Kirkendall, C. K., and Dandridge, A. (2004). "Overview of high performance fibre-optic sensing." J. Phys. D Appl. Phys., 37(18), R197-R216.
[42] Kogelnig, A., Hübl, J., Suriñach, E., Vilajosana, I., and McArdell, B. (2011). "Infrasound produced by debris flow: propagation and frequency content evolution." Nat. Hazards, 1-21.
[43] Love, A. E. H. (1944). A Treatise on the Mathematical Theory, Dover Publications, New York.
[44] Meltz, G., Morey, W. W., and Glenn, W. H. (1989). "Formation of Bragg gratings in optical fibers by a transverse holographic method." Opt Lett, 14(15), 823-825.
[45] Mindlin, R. D. (1949). "Compliance of elastic bodies in contact." J. Appl. Mech., ASME, 16, 259-268.
[46] Morey, W. W., Meltz, G., and Gleen, W. H. "Fiber Bragg grating sensors." Proc., Fiber Optic & Laser Sensors VII, SPIE, 98.
[47] Okuda, S., Okunishi, K., and Suwa, H. (1980). "Observation of debris flow at Kamikamihori Valley of Mt. Yakedake." Proc., the 3rd meeting of IGU commission on field experiment in geomorphology, 127-130.
[48] Oppenheim, A. V., Schafer, R. W., and Buck, J. R. (1999). Discrete-Time Signal Processing, Prentice Hall, New Jersey.
[49] Pei, H., Cui, P., Yin, J., Zhu, H., Chen, X., Pei, L., and Xu, D. (2011). "Monitoring and warning of landslides and debris flows using an optical fiber sensor technology." J. Mt. Sci., 8(5), 728-738.
[50] Pierson, T. C. (1986). "Flow behavior of channelized debris flows, Mount St. Helens, Washington." Hillslope Processes, A. D. Abrahms, ed., Allen & Unwin, Boston, 269-296.
[51] Pierson, T. C., Janda, R. J., Thouret, J.-C., and Borrero, C. A. (1990). "Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars." J. Volcanol. Geoth. Res., 41(1–4), 17-66.
[52] Proshaka, J. D., Snitzer, E., Chen, B., Maher, M. H., Nawy, E. G., and Morey, W. W. "Fiber optic Bragg grating strain sensor in large scale concrete structures." Proc., SPIE Fiber Optic Smart Structuresand Skins, 286.
[53] Suriñach, E., Vilajosana, I., Khazaradze, G., Biescas, B., Furdada, G., and Vilaplana, J. M. (2005). "Seismic detection and characterization of landslides and other mass movements." Nat. Hazards Earth Syst. Sci., 5(6), 791-798.
[54] Suwa, H., Yamakoshi, T., and Sato, K. (2000). "Relationship between debris-flow discharge and ground vibration." Proc., 2nd Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, A. A. Balkema, Brookfield, Vt., 311-318.
[55] Takahashi, T. (1991). Debris Flow, Balkema, Rotterdam.
[56] Teeca, P. R., Galgaro, A., Genevois, R., and Deganutti, A. M. (2003). "Development of a remotely controlled debris flow monitoring system in the Dolomites (Acquabona, Italy)." Hydrol Process, 17(9), 1771-1784.
[57] Toksöz, M. N., and Johnston, D. H. (1981). Seismic Wave Attenuation, Society of Exploration Geophysics, Tulsa, Okla, USA.
[58] White, J. E. (1983). Underground sound: application of seismic waves, Elsevier Science Publishers B. V.
[59] White, J. E., and Sengbush, R. L. (1953). "Velocity measurements in near-surface formations." Geophysics, 18(1), 54-69.
[60] Woods, R. D. (1968). "Screening of surface waves in soils." Am. Soc. Civil Engr. J. Soil Mech., 94(SM4), 951-979.
[61] Yin, H.-Y. (2005). "Studying and monitoring the ground vibration generated by debris flows." Ph.D., National Cheng Kung University, Tainan.
[62] 尹孝元、黃清哲、連惠邦、李秉乾、周天穎、王晉倫 (2006),〈自動化土石流觀測系統之發展及應用〉,《中華水土保持學報》,37(2),91-109。
[63] 何幸娟、林伯勳、冀樹勇、尹孝元、施美琴、羅文俊 (2012) ,〈神木集水區土壤沖蝕特性〉,《中華水土保持學報》,43(3),275-283。
[64] 何幸娟、林伯勳、冀樹勇、施美琴、尹孝元、陳振宇 (2011) ,〈神木地區土石流發生成因初探〉,《中興工程季刊》,110,41-51。
[65] 李尹維 (2011) ,〈不同土石流振動訊號偵測系統特性之比較〉,《碩士論文》,國立成功大學,台南。
[66] 周庭旭 (2013) ,〈數位濾波器應用於土石流地聲訊號分析之研究〉, 《碩士論文》,國立成功大學,台南。
[67] 高橋保 (1997) ,〈橫跨土石流潛勢區域之橋樑工程問題〉,《土木工程防災系列研習會》,中央大學土木系橋樑工程研究中心。
[68] 黃清哲 (2012) ,〈區域性低頻地聲量測系統應用於坡地災害監測之研究〉,《成果報告》,行政院農業委員會水土保持局,南投,台灣,248。
[69] 黃清哲、朱崇銳、田宗謨、尹孝元 (2013) ,〈土石流光纖感測系統之發展與應用〉,《中華水土保持學報》。(accepted)