| 研究生: |
黃文歆 Huang, Wen-Hsin |
|---|---|
| 論文名稱: |
曾文溪口於颱洪期間之泥沙傳輸趨勢 Sediment Transport at the Zengwen River Mouth during typhoon |
| 指導教授: |
陳佳琳
Chen, Jia-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 曾文溪口 、輸沙 、數值模擬 、沿海 |
| 外文關鍵詞: | Zenweng river, sediment transport, estuary, ROMS |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣本島受地理環境影響,高山地形面積遼闊且坡地與河岸地質不穩定,常為集水區帶來豐厚的沖積沙源;而 高山多為南北走向,總和以上因素,導致臺灣河川含沙濃度極高,成為西部河口海域地區主要沙土來源,並且對河口及下游沿海地形的穩定扮演重要的角色。
而近數十載以來,曾文溪口與沿海地區因集水區上游水庫、防沙壩等水土保持設施的興建及河岸河床地整治,導致河川沙源已不復以往;沿海地區的港灣、突堤等外凸結構物對於沿岸漂沙的阻攔;束洪效應對於沖積三角洲的影響,使得海岸線長期呈現侵蝕狀態。而河口作為河海交會處,因受潮流、波浪、河川入流與不規則地形…等因素與其交互作用所影響,使得河口相鄰近海域之水理運動與輸沙行為過於複雜,也因此難以預測與模擬。
本研究使用數值模式Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST)中的區域海洋環流組件Regional Ocean Modeling System(ROMS),針對曾文溪口與近岸海域於2018年冬季(11月21日至11月28日)以及2019年夏季(8月22日至9月4日)期間的實測資料進行場景模擬與驗證,且根據模式結果的時序列比對下,具有一定的合理性。隨後延續模式的場景與設定,模擬在受到潮汐與不同量級河川流量的作用下,區域內相異粒徑的輸沙趨勢與行為,並使用不同粒徑泥沙的模擬結果歸結出不同粒徑泥沙再懸浮的範圍,以及向北傳輸的程度。
The geological environment of Taiwan Island covers a vast area of high mountain terrain along with unstable slope and riverbank geology, which often provides a rich source of alluvial deposits in the watershed; and the high mountainous terrain usually runs north-south. As a result, sediment concentration in Taiwan's rivers can be a main source of sediment in the western region of Taiwan and play an important role in stabilizing the estuarine and downstream coastal terrain.
This study use the Regional Ocean Modeling System (ROMS), the regional ocean circulation component of the numerical model Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST). To November 28) and the measured data during the summer of 2019 (August 22 to September 4) for scenario simulation and verification, and based on the time series comparison of the model results, it is reasonable to a certain extent. Subsequently, keep the scenarios and settings of the model to simulate the sand transport trends and behaviors of different particle sizes in the region under the action of tides and river flows of various magnitudes. However, if the high tide is in the base flow period, the seawater may flow into the estuary, and the low tide will accelerate outward regardless of the flow rate. Results for the various particle sizes show that the primary difference is the area where settlement and resuspension occur continuously in the delta plain and the distance of northward transport. In addition, although there was sediment deposition on the northern estuary during the flow event, after the flooding, most sediment will still return to the outer estuary by tidal drive after flooding.
1. Annandale, G. W., Morris, G. L., & Karki, P. (2016). Extending the life of reservoirs: Washington, DC: World Bank.
2. Chapman, D. C. (1985). Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model. Journal of Physical Oceanography, 15(8), 1060-1075. doi:10.1175/1520-0485(1985)015<1060:Ntocso>2.0.Co;2
3. Chassignet, E. P., Arango, H., Dietrich, D., Ezer, T., Ghil, M., Haidvogel, D. B., . . . Sirkes, Z. (2000). DAMEE-NAB: the base experiments. Dynamics of Atmospheres and Oceans, 32(3-4), 155-183.
4. Chen, S. N., Geyer, W. R., & Hsu, T. J. (2013). A numerical investigation of the dynamics and structure of hyperpycnal river plumes on sloping continental shelves. Journal of Geophysical Research: Oceans, 118(5), 2702-2718.
5. Chien, H., Chiang, W.-S., Kao, S.-J., Liu, J., Liu, K.-K., & Liu, P. (2011). Sediment Dynamics Observed in the Jhoushuei River and Adjacent Coastal Zone in Taiwan Strait. Oceanography, 24(4), 122-131. doi:10.5670/oceanog.2011.100
6. Flores, R. P., Rijnsburger, S., Horner-Devine, A. R., Kumar, N., Souza, A. J., & Pietrzak, J. D. (2020). The formation of turbidity maximum zones by minor axis tidal straining in regions of freshwater influence. Journal of Physical Oceanography, 50(5), 1265-1287.
7. Geyer, W. R., & MacCready, P. (2014). The Estuarine Circulation. Annual Review of Fluid Mechanics, 46(1), 175-197. doi:10.1146/annurev-fluid-010313-141302
8. Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., . . . Lanerolle, L. (2008). Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics, 227(7), 3595-3624.
9. Liu, H., Xu, K., Ou, Y., Bales, R., Zang, Z., & Xue, Z. G. (2020). Sediment Transport near Ship Shoal for Coastal Restoration in the Louisiana Shelf: A Model Estimate of the Year 2017–2018. Water, 12(8). doi:10.3390/w12082212
10. Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., & Lin, S. W. (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256(1-4), 65-76. doi:10.1016/j.margeo.2008.09.007
11. Liu, J. T., Chao, S.-y., & Hsu, R. T. (2002). Numerical modeling study of sediment dispersal by a river plume. Continental Shelf Research, 22(11-13), 1745-1773.
12. Liu, J. T., Wang, Y. H., Yang, R. J., Hsu, R. T., Kao, S. J., Lin, H. L., & Kuo, F. H. (2012). Cyclone‐induced hyperpycnal turbidity currents in a submarine canyon. Journal of Geophysical Research: Oceans, 117(C4).
13. Marchesiello, P., McWilliams, J. C., & Shchepetkin, A. (2001). Open boundary conditions for long-term integration of regional oceanic models. Ocean Modelling, 3(1-2), 1-20.
14. Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4). doi:10.1029/RG020i004p00851
15. Milliman, J. D., Lin, S. W., Kao, S. J., Liu, J. P., Liu, C. S., Chiu, J. K., & Lin, Y. C. (2007). Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, 35(9). doi:10.1130/g23760a.1
16. Moriarty, J. M., Harris, C. K., & Hadfield, M. G. (2014). A hydrodynamic and sediment transport model for the Waipaoa Shelf, New Zealand: Sensitivity of fluxes to spatially-varying erodibility and model nesting. Journal of Marine Science and Engineering, 2(2), 336-369.
17. Orlanski, I. (1976). A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics, 21(3), 251-269. doi:10.1016/0021-9991(76)90023-1
18. Raymond, W. H., & Kuo, H. L. (1984). A radiation boundary condition for multi-dimensional flows. Quarterly Journal of the Royal Meteorological Society, 110(464), 535-551. doi:10.1002/qj.49711046414
19. Rubey, W. W. (1933). Settling velocities of gravel, sand and silt particles. Amer. Jour. Sci., 25, 325-338.
20. Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347-404.
21. Shchepetkin, A. F., & McWilliams, J. C. (2009). Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. Journal of Computational Physics, 228(24), 8985-9000.
22. Warner, J. C., Armstrong, B., He, R., & Zambon, J. B. (2010). Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Modelling, 35(3), 230-244.
23. Warner, J. C., Defne, Z., Haas, K., & Arango, H. G. (2013). A wetting and drying scheme for ROMS. Computers & Geosciences, 58, 54-61. doi:10.1016/j.cageo.2013.05.004
24. Warner, J. C., Geyer, W. R., & Lerczak, J. A. (2005). Numerical modeling of an estuary: A comprehensive skill assessment. Journal of Geophysical Research: Oceans, 110(C5).
25. Xie, X., Li, M., & Ni, W. (2018). Roles of Wind-Driven Currents and Surface Waves in Sediment Resuspension and Transport During a Tropical Storm. Journal of Geophysical Research: Oceans, 123(11), 8638-8654. doi:10.1029/2018jc014104
26. 邵廣昭, & 林幸助. (1996). 曾文溪口海岸地區陸海交互作用之研究計畫及第二年度研究成果彙整. 全球變遷通訊雜誌(12), 1-7.
27. 洪奕星, 蔡政翰, 歐俊宏, 曾信勝, & 遲建業 (Writers). (1995). 曾文溪三角洲海域季節性沉積物之傳輸. In 第17屆海洋工程研討會暨1995兩岸港口及海岸開發研討會: 海洋工程協會.
28. 陳翰霖, & 張瑞津. (2003). 曾文水庫對流量及輸沙量的影響. 國立臺灣師範大學地理研究報告.
29. 黃郁晴. (2020). 波浪對河口沉積過程影響之數值研究.
30. 劉祖乾. (1996). 曾文溪河口近岸沈積系統之沈積物粒徑分布型態研究. 中山大學海洋地質研究所,
31. 羅聖宗 (Writer). (1995). 布袋至安平外海海底底形特徵. In 第十七屆海洋工程研討會.
校內:2027-09-05公開