| 研究生: |
葉奕琪 Yeh, Yi-Qi |
|---|---|
| 論文名稱: |
三元界面活性劑系統應用於中孔洞氧化矽材料的合成研究 Study on the Synthesis of Mesoporous Silica Templated with Ternary Surfactant System |
| 指導教授: |
林弘萍
Lin, Hong-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 中孔洞氧化矽空心球 、中孔洞氧化矽薄片 、生物成礦 |
| 外文關鍵詞: | HSSMS, mesoporous silica platelet, biomineralization |
| 相關次數: | 點閱:148 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般的週期性中孔洞氧化矽材料必須在相當嚴苛的反應條件下合成,如:高反應物濃度、慢速矽酸鹽聚合、強酸或強鹼反應環境、經高溫水熱處理或需長時間熟化等,與自然界生成氧化矽成礦環境(pH~5-6,近室溫條件,低反應物濃度)有極大差異。因此,以模擬生物成礦矽質化作用(Biomimetic Silicification)的基本概念推演,本研究採用正電性界面活性劑四級銨鹽(CTAB)、負電性界面活性劑(SDS)和中性共聚高分子(P123),與無機矽酸鹽(Sodium Silicate),在低反應物濃度、近自然界氧化矽成礦環境(pH約5-6)及室溫(40-50 oC)條件下,有效率地合成中孔洞氧化矽材料。
本實驗是利用CTAB-SDS-P123-watetr系統作為有機模板,藉由調控正負電性界面活性劑間組份比(SDS/CTAB莫耳比,表示為S),合成出不同型態的中孔洞氧化矽材料,內容分為兩部份: 一為具有垂直性孔道的中孔洞氧化矽薄片,另一為具有中孔洞殼層的氧化矽空心球 (HSSMS),再針對SDS/CTAB莫耳比等於0.6 (S=0.6)所製成的HSSMS加以討論;中孔洞氧化矽材料的外觀型態與孔洞結構受許多因素影響,包括:氧化矽寡聚物尺度,反應環境的pH值,及有機模板系統的組份種類、各組份間比例、濃度、溫度、攪拌時間、製備順序等因素,探討合成條件對中孔洞氧化矽材料的型態與孔洞結構的影響,要製作出高度規則性結構的中孔洞氧化矽薄片(⊥),適用的Pluronis有P123及P103,而中孔洞殼層的氧化矽空心球 (HSSMS)的型態與介尺度結構則隨使用的Pluronics而變化,本文提出雙模板模型說明上述兩材料的生成機制,正負電性界面活性劑作為型態的模板,Pluronic高分子作為介尺度結構的模板;並嘗試以中孔洞氧化矽薄片(⊥)作為固體模板製作出中孔洞薄片碳材(⊥)。對於不同型態的中孔洞氧化矽材料在熱重分析儀(TGA)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)、氮氣等溫吸附-脫附測量(N2 adsorption-desorption isotherm)、X-射線粉末繞射光譜(PXRD)及拉曼光譜(Raman Spectroscopy)上做深入研究。
Recently, periodic mesoporous silicas have been synthesized under extreme conditions, such as high reactant concentration, slow silicification rate, highly alkaline (pH > 8.0) or acidic (pH < 1.0) solution, high-temperature hydrothermal post-treatment and a long reaction time. In contrast, biomineralization in nature takes place in a neutral and dilute silicate solution at ambient temperature. To mimic the biomineralization, we presented a convenient method to synthesize mesoporous silicas by using cation-anionic-Pluronic ternary surfactant system as the template in dilute silicate solution under a mild condition (i.e., T~40-50 oC o and pH~5-6).
With a careful control on the anionic/cationic surfactant ratio (S), the mesoporous silica platelet with perpendicular nanochannels and hollow silica spheres with mesostructured shell (denoted as HSSMS) were obtained. The mesoporous silica platelet() was prepared at S = 1.3–1.9, and the HSSMS was synthesized at S = 0.5–0.8. In addition to changing the S values, the morphology and mesostructure of the mesoporous silicas were influenced by many synthetic parameters including the size of silicate oligomers, pH-value of the silicate solution, and the chain length of the cationic surfactant, the concentration, temperature, preparation procedure, …etc). For preparing the high-quality mesoporous silica platelet(), the suitable Pluronic triblock copolymers are P123 and P103. Different from the mesoporous silica platelet(), the HSSMS can be synthesized by using different Pluronic triblock copolymers and the mesostructure and pore size is dependent on the Pluronic triblock copolymers. To explain the formation of mesoporous silica platelet() and HSSMS, we proposed a bi-mold templating model, in which the cationic-anionic surfactants act as the morphological template and the Pluronic triblock copolymers perform as the mesostructure template.
In practice, the mesoporous silica platelet() could be used as the solid template to synthesize the mesoporous carbon platelet(). The physicochemical properties of these mesoporous materials were characterized by the thermogravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), the N2 adsorption-desorption isotherm, powder X-ray diffraction (PXRD) and Raman Spectroscopy. Based on these results, one can understand more about the biomineralization and the chemistry of the ternary-surfactant system.
1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
3. W. Wang, S. Xie, W. Zhou and A. Sayari. Chem. Mater. 2004,16, 1756.
4. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem. 2003, 115 , 3254.
5. A. Vinu, V. Murugesan, M. Hartmann. Chem. Mater. 2003, 15, 1385.
6. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
7. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
8. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
9. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
10. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
11. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao. Angew. Chem. Int. Ed. 2001, 7, 1258.
12. A. Walcarius, M. Etienne, B. Lebeau. Chem. Mater. 2003, 15, 2161.
13. T. Yokoi, H. Yoshitake, T. Tatsumi. J. Mater. Chem. 2004, 14 , 951.
14. J. M. Cha, G. D. Stucky, D. E. Morse, T. J. Deming. Nature 2000, 48, 289.
15. E. B. Erlein. Angew. Chem. Int. Ed. 2003, 42, 614.
16. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu. Angew. Chem. Int. Ed. 2003, 42, 413.
17. A. M. B, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D.Stucky, D. E. Morse, Nature 1996, 381, 56.
18. Davis, M. E. Nature 2002, 417, 813.
19. Mal, N. K. Fujiwara, M. Tanaka, Y. Nature 2003, 421, 350.
20. A. Stein, Adv. Mater. 2003, 15, 763.
21. D. Y. Yu, C. Z. Tian, B. Z. Zhao, Curr. Opin. Solid State Mater. Sci. 2003, 7, 191
22. T. F. Todros, Surfactants, Academic Press : London, 1984.
23. B. Lindman and H. Wennerstrm, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
24. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
25. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264.
26. S. R. Raghavan, G. Fritz, E. W. Kaler, Langmuir 2002, 18, 3797.
27. L. L. Brasher, K. L. Herrington, E. W. Kaler, Langmui 1995, 11, 4267.
28. M. T. Yatcilla, K. L. Herrington, L. L. Brasher, E. W. Kaler, S. Chiruvolu, J. A. Zasadzinski , J. Phys. Chem. 1996, 100,5874.
29. K. Tsuchiya, H. Nakanishi, H. Sakai, M. Abe, Langmuir, 2004, 20(, 2117.
30. M. Antonietti, S. Frster, Adv. Mater. 2003, 15,1323.
31. P. Alexandridis, U. Olsson, B. Lindman, Langmuir 1998,14,2627.
32. Xuemei Liang, Guangzhao Mao, K.Y. Simon Ng, J Colloid Interface Sci. 2005, 285, 360.
33. M. Johnsson, M. Silvander, G. Karlsson, K. Edwards, Langmuir 1999,15, 6314
34. M. A. Firestone, A. C. Wolf, S. Seifert, Biomacromolecules 2003, 4, 1539.
35. M. Johnsson, M. Silvander, G. Karlsson, K. Edwards, Langmuir 1999, 15,6314
36. S. Alexander, J. Phys. 1977, 38, 983.
37. P. G. de Gennes, Macromolecules 1980, 13, 1069.
38. Montse Rovira-Bru, D. H. Thompson, Igal Szleifer, Biophysical Journal 2002, 83, 2419
39. M. Johnsson, K. Edwards, Biophysical Journal 2003, 85, 3839.
40. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier,P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stukey .Chem. Mater. 1994, 6, 1176.
41. Dongyuan Zhao, Jianglin Feng, Qisheng Huo, Nicholas Melosh, Glenn H. Fredrickson, Bradley F. Chmelka, G. D. Stucky Science 1998, 273,548.
42. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids 1985, 70, 301.
43. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
44. J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. Yang, D. Zhao, G. D. Stucky, J. Y. Ying, Langmuir 2000, 16,8291.
45. A. Fukuoka, H. Miyata, K. Kuroda, Chem. Commun. 2003, 284
46. P. N. Minoofar, R. Hernandez, S. Chia, B. Dunn, J. I. Zink, A-C. Franville, J. Am.Chem. Soc. 2002, 124, 14388.
47. D. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. Ji, Y-B, Jiang, H. Xu, J. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. Lu, Adv. Mater. 2003, 15,130
48. Y. Yang, Y. Lu, M. Lu, J. Huang, R. Haddad, G. Xomeritakis, N. Liu, A. P.Malanoski, D. Sturmayr, H. Fang, D. Y. Sasaki, R. A. Assink, J. A. Shelnutt, F.V.Swol, G. P. Lopez, A. R. Burns, C. J. Brinker, J. Am. Chem. Soc. 2003, 125, 1269.
49. H. Yang, N. Coombs, I. Sokolov, G. A. Ozin, Nature 1996, 381, 589.
50. R. Ryoo, C. H. Ko, S. J. Cho, J. M. Kim, J. Phys. Chem. B 1997, 101, 10610.
51. S. Schacht, Q. Huo, I. G. Voigt-Martin, G. D. Stuky, F. Schuth, Science 1996, 273, 768.
52. I. A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P. M. Eisenberger, and S. M. Gruner, Science 1996, 273, 892.
53. H. Yang, Alex Kuperman, N. Coombs, Suzan Mamiche-Afara, Geoffrey A. Ozin, Nature 1996, 379, 703.
54. H. Yang, N. Coombs, Igor Sokolov, Geoffrey A. Ozin, J. Mate. Chem. 1997, 7, 1285.
55. L. H. Radzilowski, B. L. Carvalho, E. L. Thomas, J. Polym. Sci. Part B. 1996, 34, 3081.
56. A. Knoll, A. Horvat, K. S. Lyakhova, G. Krausch, G. J. A. Sevink, A. V. Zvelindovsky, R. Magerle, Phys. Rev. Lett. 2002, 89, 035501
57. Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, J. C. Brinker, W.
Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, J. I. Zink, Nature 1997, 389, 364.
58. Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger,
R. Leon, P. M. Petroff, F. Schth, G. D. Stucky, Nature 1994, 368, 317.
59. I. A. Aksay, M. Trau, I. Honma, N. Yao, L. Zhou, P. Fenter, P. M. Eisenberger, S. M. Gruner, Science 1996, 273, 892.
60. R. Ryoo, C. H. Ko, S. J. Cho, J. M. Kim, J. Phys. Chem. B 1997, 101, 10 610.
61. Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, J. C. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, J. I. Zink, Nature 1997, 389, 364
62. G. Gregoriadis, P.D. Leathwood, B. E. Ryman, FEBS Lett. 1971, 14, 95
63. G. Blume, G. Cevc, Biochem. Biophys. Acta 1990, 1029, 91-97.
64. B. Mdischer, Y.-Y. Won, D. S. Ege, J. C.-M. Lee, F. S. Bates, D. E. Discher, D. A. Hammer, Science 1999, 284, 1143.
65. T. Kowalewski, K. L.Wooley, J. Am. Chem. Soc. 1999, 121, 3805.
66. H. Ringsdorf, B. Schlarb, Venzmer, J. Angew. Chem., Int. Ed. Engl. 1998, 27, 113.
67. M. S. Wendland, S. C. Zimmerman, J. Am. Chem. Soc. 1999, 121, 1389.
68. Caruso, F.; Shi, X.; Caruso, R. A.; Susha, A. Adv. Mater. 2001, 13, 740.
69. Bourlinos, B.; Karakassides, M. A.; Petridis, D. Chem. Commun. 2001, 1518.
70. Zhu, G.; Qui, S.; Terasaki, O.; Wei, Y. J. Am. Chem. Soc. 2001, 123, 7723.
71. Li, W.; Coppens, M.-O. Chem. Mater. 2005, 17, 2241.
72. Sun, Q.; Kooyman, P. J.; Grossmann, G.; Bomans, P. H. H.; Frederik, P. M.; Magusin, P. C. M. M.; Beelen, T. P. M.; Santen, R. A. van S.; Sommerdijk, N. A. J. M. Adv. Mater. 2003, 15, 1097.
73. Schacht, S.; Huo, Q.; Voigt-Martin, I. G.; Stucky, G. D.; Schu¨th, F.; Science 1996, 273, 768.
74. Wang, B.; Shan, W.; Zhang, Y.; Xia, J.; Yang, W.; Gao, Z.; Tang, Y. Adv. Mater. 2005, 17 578.
75. Li, W.; Sha, X.; Dong, W.; Wang, Z. Chem. Comm. 2002, 2434.
76. B.C. Chena, H.P. Lin, M.C. Chao, C.Y. Mou, C.Y Tang, Adv. Mater. 2004, 16, 1657.
77. Y.Q. Yeh, B.C. Chen, H.P. Lin, C.Y. Tang, Langmuir 2006, 22, 6.
78. J. Jansson, K. Schillen, G. Olofsson, R. Cardoso da Silva, W. Loh, J. Phys. Chem. B 2004, 108, 82.