簡易檢索 / 詳目顯示

研究生: 黃子峻
Huang, Tzu-Chun
論文名稱: 利用pH值控制二碲化釩的形貌:從針狀到層狀,作為高性能的水性鋅離子電池陰極
pH control to morphology from needles to layers of VTe2 for high performances in aqueous Zinc-Ion battery
指導教授: 陳雨澤
Chen, Yu-Ze
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 92
中文關鍵詞: 水性鋅-離子電池層狀的二碲化釩平的放電平台快速鋅-離子擴散陰極
外文關鍵詞: aqueous zinc-ion batteries, VTe2 nanosheets, flat discharge plateau, fast Zn diffusion kinetics, cathode
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有高功率密度和長循環壽命的高性能可充電式水性鋅-離子電池是很有前景的,並且有著它獨特的優點,包括價格便宜以及高安全性等等,但是為了更進一步的發展,目前他們正在積極的尋找具有良好倍率能力與足夠循環壽命的合適陰極材料。

    此研究表明,首次使用不同釩元素前驅物以及表面活性劑來調控不同酸鹼度的二碲化釩形貌,除此之外,發現到在具有單一步驟的鋅離子嵌入/脫嵌到層狀的二碲化釩奈米片機制可以經由非原位X光繞射(Ex-situ XRD)材料分析來證明鋅-離子的優異存儲性能,層狀二碲化釩奈米片在0.6 V展現出一個平的放電平台,在電流密度為0.1 A g-1有著高的比電容量(246.9 mA h g-1),而且在幾乎沒有任何活化的狀況下,在電流密度為2 A g-1循環200圈可以看到電容量保留率是93.9 %,如此有潛力的循環穩定性應該歸功於快速的鋅離子擴散(鋅離子擴散係數大約是8・10-7 cm2s-1)。

    目前的研究表明,層狀二碲化釩是對於水性鋅-離子電池而言是一種非常有前途的陰極材料,具有優於其他二維過度金屬硫化物(TMDs)的電池性能,而層狀結構也提供了與電解質的大量接觸,並且縮短了離子擴散的路徑,促進了快速動力學和長期穩定性。

    關鍵字: 水性鋅離子電池、層狀的二碲化釩、平的放電平台、快速鋅-離子擴散、陰極

    The realizing of high performances rechargeable aqueous zinc-ion batteries (AZIBs) with high power density and long cycle life is promising because of their good points (low costs and high safety, etc.). But for further development, while they seek for the suitable cathode materials with both good rate capability and adequate cycle life span. In this study, different vanadium precursors and surfactants were used for the first time to adjust the morphology of VTe2 with different pH values. Furthermore, It was discovered that the mechanism of intercalation/deintercalation of zinc ions with a single step into the layered vanadium ditelluride nanosheets can be demonstrated by ex-situ XRD material analysis to prove the superiority of zinc-ions. Storage performance The VTe2 nanosheets exhibits a flat discharge plateau at 0.6 V, a high specific capacity of 246.9 mA h g-1(at 0.1 A g-1). More importantly, outstanding cycle stability (capacity retention of 93.9%) after 150 cycles (at 2 Ag-1) without any activation process is achieved. Such a promising cyclic stability should be attributed to its fast Zn diffusion kinetics (Dzn2+=8・10-6 cm2s-1). The present finding implies that layered VTe2 is a very promising cathode material in AZIBs with outstanding battery performance superior to other layered transitional metal dichalcogenides. In the end, the layered structure provides abundant contact with electrolyte, shortens ion diffusion path, facilitating both fast kinetics and long-term stability.
    Key words: aqueous zinc-ion batteries, VTe2 nanosheets, flat discharge plateau, fast Zn diffusion kinetics, cathode

    目錄 中文摘要 I Extended Abstract II 致謝 VIII 目錄 X 表目錄 XIV 圖目錄 XV Chapter 1 緒論 1 1-1 前言 1 1-2 研究動機 2 Chapter 2 文獻回顧 3 2-1 水性鋅-離子電池的簡介 3 2-2 能量元件的比較與鋅電池的優勢 5 2-2-1 鋅空氣電池的工作原理 6 2-2-2 水性鋅離子電池的工作原理 7 2-3 層狀結構的材料 8 2-3-1 石墨烯(graphene)介紹 9 2-3-2 過度金屬二硫化物(TMDs) 10 2-3-3 黑磷(Black phosphorous) 12 2-4 過度金屬硫化物作為水性鋅-電池的陰極 13 2-4-1 二氧化錳 (MnO2) 13 2-4-2 二氧化釩(VO2) 15 2-4-3 五氧化二釩 (V2O5) 16 2-4-4 二硫化釩 (VS2) 17 2-4-5 二硒化釩(VSe2): 21 Chapter 3 實驗方法與步驟 23 3-1 材料分析與電極製備 23 3-1-1 水熱法合成層狀二碲化釩 23 3-1-2 水熱法合成針狀二碲化釩 25 3-1-3 利用水熱法合成層狀碲烯 28 3-1-4 層狀二碲化釩變成活性材料滴在碳紙上 29 3-2 不同二碲化釩形貌的材料分析 30 3-2-1 材料鑑定結構 30 3-2-2 表面形貌及結構分析 32 3-2-3 定性及半定量分析 34 3-3 不同二碲化釩形貌的電化學量測 36 3-3-1 電化學檢測裝置 36 3-3-2 循環伏安法曲線量測 37 3-3-3 計時電位法曲線量測 38 3-4 電極之比電容計算 38 3-4-1 計時電位法 39 3-4-2 循環伏安法 39 3-5 交流阻抗分析(EIS) 40 3-6 恆電流間歇滴定技術法(GITT) 41 3-7 藥品資訊 42 Chapter 4 結果與討論 44 4-1 層狀二碲化釩的材料分析 44 4-1-1 結構鑑定 44 4-1-2 形貌鑑定 46 4-1-3 形成二碲化釩奈米片在不同水熱法時間的成長機制 48 4-1-4 形成二碲化釩奈米片在不同水熱法溫度的機制探討 50 4-1-5形成二碲化釩在不同莫耳數比例前驅物的機制探討 52 4-2 二碲化釩形貌在不同pH值之下的材料分析 54 4-2-1 不同釩前驅物之下VTe2的形貌變化 54 4-2-2 不同釩前驅物在不同表面活性劑之下VTe2的形貌變化 56 4-2-3 透過不同的pH值之下的材料分析來驗證二碲化釩 58 4-2-4 不同的pH值之下的深入探討 60 4-2-5 針狀二碲化釩的材料分析(pH=4) 62 4-2-6 奈米帶狀二碲化釩的材料分析(pH=7) 63 4-2-7 層狀碲烯材料分析(pH=13) 64 4-2-8 不同的pH值之下1-D VTe2到2-D VTe2的形貌演變圖 65 4-3 二碲化釩做為水性鋅離子電池陰極的電化學表現 67 4-3-1 Zn/VTe2在不同pH值之下的電化學性能 67 4-3-2 在循環前後,不同pH值之下的奈奎斯特圖 70 4-3-3 鹼性的層狀二碲化釩做為陰極的電化學表現(pH=10) 72 4-4 層狀二碲化釩的電化學動力學探討 75 4-5 層狀二碲化釩的性能評估 77 4-6 層狀二碲化釩做為陰極的鋅離子存儲機制分析 79 4-7 層狀二碲化釩做為陰極的運作原理 81 4-7-1 層狀二碲化釩與其他做為陰極的電池性能比較表格 83 Chapter 5 結論與未來展望 84 參考文獻 85

    參考文獻
    1. Li, Y.; Dai, H., Recent advances in zinc–air batteries. Chemical Society Reviews 2014, 43 (15), 5257-5275.
    2. Kötz, R.; Carlen, M., Principles and applications of electrochemical capacitors. Electrochimica acta 2000, 45 (15-16), 2483-2498.
    3. Kaul, A. B., Two-dimensional layered materials: Structure, properties, and prospects for device applications. Journal of Materials Research 2014, 29 (3), 348.
    4. Zhang, H., Ultrathin two-dimensional nanomaterials. ACS nano 2015, 9 (10), 9451-9469.
    5. Hong, W.-K.; Cha, S.; Sohn, J. I.; Kim, J. M., Metal-insulator phase transition in quasi-one-dimensional VO2 structures. Journal of Nanomaterials 2015, 2015.
    6. Xu, C.; Li, B.; Du, H.; Kang, F., Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angewandte Chemie 2012, 124 (4), 957-959.
    7. Chao, D.; Zhou, W.; Xie, F.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S.-Z., Roadmap for advanced aqueous batteries: From design of materials to applications. Science advances 2020, 6 (21), eaba4098.
    8. Zhu, J.; Jian, T.; Wu, Y.; Ma, W.; Lu, Y.; Sun, L.; Meng, F.; Wang, B.; Cai, F.; Gao, J., A highly stable aqueous Zn/VS2 battery based on an intercalation reaction. Applied Surface Science 2021, 544, 148882.
    9. Wu, Z.; Lu, C.; Wang, Y.; Zhang, L.; Jiang, L.; Tian, W.; Cai, C.; Gu, Q.; Sun, Z.; Hu, L., Ultrathin VSe2 Nanosheets with Fast Ion Diffusion and Robust Structural Stability for Rechargeable Zinc‐Ion Battery Cathode. Small 2020, 16 (35), 2000698.
    10. Zhang, X.; He, Q.; Xu, X.; Xiong, T.; Xiao, Z.; Meng, J.; Wang, X.; Wu, L.; Chen, J.; Mai, L., Insights into the Storage Mechanism of Layered VS2 Cathode in Alkali Metal‐Ion Batteries. Advanced Energy Materials 2020, 10 (22), 1904118.
    11. He, P.; Quan, Y.; Xu, X.; Yan, M.; Yang, W.; An, Q.; He, L.; Mai, L., High‐performance aqueous zinc–ion battery based on layered H2V3O8 nanowire cathode. Small 2017, 13 (47), 1702551.
    12. Fang, G.; Zhou, J.; Pan, A.; Liang, S., Recent advances in aqueous zinc-ion batteries. ACS Energy Letters 2018, 3 (10), 2480-2501.
    13. Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C., Production and processing of graphene and 2d crystals. Materials today 2012, 15 (12), 564-589.
    14. Wang, J.; Wang, J.-G.; Liu, H.; Wei, C.; Kang, F., Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. Journal of Materials Chemistry A 2019, 7 (22), 13727-13735.
    15. Larcher, D.; Tarascon, J.-M., Towards greener and more sustainable batteries for electrical energy storage. Nature chemistry 2015, 7 (1), 19-29.
    16. Zuo, S.; Xu, X.; Ji, S.; Wang, Z.; Liu, Z.; Liu, J., Cathodes for Aqueous Zn‐Ion Batteries: Materials, Mechanisms, and Kinetics. Chemistry–A European Journal 2021, 27 (3), 830-860.
    17. Hu, Z.; Liu, Q.; Chou, S. L.; Dou, S. X., Advances and challenges in metal sulfides/selenides for next‐generation rechargeable sodium‐ion batteries. Advanced Materials 2017, 29 (48), 1700606.
    18. Wang, M.; Song, Y.; Sun, Z.; Shao, Y.; Wei, C.; Xia, Z.; Tian, Z.; Liu, Z.; Sun, J., Conductive and catalytic VTe2@ MgO heterostructure as effective polysulfide promotor for lithium–sulfur batteries. ACS nano 2019, 13 (11), 13235-13243.
    19. Li, J.; Zhao, B.; Chen, P.; Wu, R.; Li, B.; Xia, Q.; Guo, G.; Luo, J.; Zang, K.; Zhang, Z., Synthesis of Ultrathin Metallic MTe2 (M= V, Nb, Ta) Single‐Crystalline Nanoplates. Advanced Materials 2018, 30 (36), 1801043.
    20. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
    21. Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz, M. F.; Long, J. W.; Rolison, D. R., Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017, 356 (6336), 415-418.
    22. Song, M.; Tan, H.; Chao, D.; Fan, H. J., Recent advances in Zn‐ion batteries. Advanced Functional Materials 2018, 28 (41), 1802564.
    23. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8 (3), 902-907.
    24. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-based ultracapacitors. Nano letters 2008, 8 (10), 3498-3502.
    25. Geim, A. K.; Grigorieva, I. V., Van der Waals heterostructures. Nature 2013, 499 (7459), 419-425.
    26. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters 2010, 105 (13), 136805.
    27. Wang, L.; Xu, Z.; Wang, W.; Bai, X., Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. Journal of the American Chemical Society 2014, 136 (18), 6693-6697.
    28. Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS nano 2013, 7 (1), 791-797.
    29. Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S., Layered vanadium and molybdenum oxides: batteries and electrochromics. Journal of Materials Chemistry 2009, 19 (17), 2526-2552.
    30. Feng, J.; Sun, X.; Wu, C.; Peng, L.; Lin, C.; Hu, S.; Yang, J.; Xie, Y., Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. Journal of the American Chemical Society 2011, 133 (44), 17832-17838.
    31. Korotcenkov, G., Black phosphorus-new nanostructured material for humidity sensors: achievements and limitations. Sensors 2019, 19 (5), 1010.
    32. Chen, X.; Shen, S.; Guo, L.; Mao, S. S., Semiconductor-based photocatalytic hydrogen generation. Chemical reviews 2010, 110 (11), 6503-6570.
    33. Liu, Q.; Tan, G.; Wang, P.; Abeyweera, S. C.; Zhang, D.; Rong, Y.; Wu, Y. A.; Lu, J.; Sun, C.-J.; Ren, Y., Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation. Nano Energy 2017, 36, 197-205.
    34. Ding, J.; Du, Z.; Gu, L.; Li, B.; Wang, L.; Wang, S.; Gong, Y.; Yang, S., Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Advanced Materials 2018, 30 (26), 1800762.
    35. Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S. Z., An electrolytic Zn–MnO2 battery for high‐voltage and scalable energy storage. Angewandte Chemie International Edition 2019, 58 (23), 7823-7828.
    36. Javed, M. S.; Lei, H.; Wang, Z.; Liu, B.-t.; Cai, X.; Mai, W., 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573.
    37. Feng, J.; Peng, L.; Wu, C.; Sun, X.; Hu, S.; Lin, C.; Dai, J.; Yang, J.; Xie, Y., Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Advanced materials 2012, 24 (15), 1969-1974.
    38. Pan He, M. Y., Guobin Zhang, Ruimin Sun, Lineng Chen, Qinyou An,*; Mai*, a. L., Layered VS2 nanosheet-based aqueous Zn ion battery cathode. In Adv. Energy Mater, 2017.
    39. Chen, T.; Zhu, X.; Chen, X.; Zhang, Q.; Li, Y.; Peng, W.; Zhang, F.; Fan, X., VS2 nanosheets vertically grown on graphene as high-performance cathodes for aqueous zinc-ion batteries. Journal of Power Sources 2020, 477, 228652.
    40. Pu, X.; Song, T.; Tang, L.; Tao, Y.; Cao, T.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y., Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. Journal of Power Sources 2019, 437, 226917.
    41. Liu, W.; Hao, J.; Xu, C.; Mou, J.; Dong, L.; Jiang, F.; Kang, Z.; Wu, J.; Jiang, B.; Kang, F., Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chemical Commun 2017, 53 (51), 6872-6874.
    42. Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y.; Mallouk, T. E.; Terrones, M., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Accounts of chemical research 2015, 48 (1), 56-64.
    43. Xu, K.; Chen, P.; Li, X.; Wu, C.; Guo, Y.; Zhao, J.; Wu, X.; Xie, Y., Ultrathin nanosheets of vanadium diselenide: a metallic two‐dimensional material with ferromagnetic charge‐density‐wave behavior. Angewandte Chemie 2013, 125 (40), 10671-10675.
    44. Wang, L.; Wu, Z.; Jiang, M.; Lu, J.; Huang, Q.; Zhang, Y.; Fu, L.; Wu, M.; Wu, Y., Layered VSe2: a promising host for fast zinc storage and its working mechanism. Journal of Materials Chemistry A 2020, 8 (18), 9313-9321.
    45. Yu, D.; Pang, Q.; Gao, Y.; Wei, Y.; Wang, C.; Chen, G.; Du, F., Hierarchical flower-like VS2 nanosheets–A high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Materials 2018, 11, 1-7.
    46. Llewellyn, A. V.; Matruglio, A.; Brett, D. J.; Jervis, R.; Shearing, P. R., Using in-situ laboratory and synchrotron-based x-ray diffraction for lithium-ion batteries characterization: A review on recent developments. Condensed Matter 2020, 5 (4), 75.
    47. Flores, E.; Novák, P.; Berg, E. J., In situ and operando Raman spectroscopy of layered transition metal oxides for li-ion battery cathodes. Frontiers in Energy Research 2018, 6, 82.
    48. Korin, E.; Froumin, N.; Cohen, S., Surface analysis of nanocomplexes by X-ray photoelectron spectroscopy (XPS). ACS Biomaterials Science & Engineering 2017, 3 (6), 882-889.
    49. Zu, Y.; Bard, A. J., Electrogenerated chemiluminescence. 67. Dependence of light emission of the tris (2, 2 ‘) bipyridylruthenium (II)/tripropylamine system on electrode surface hydrophobicity. Analytical chemistry 2001, 73 (16), 3960-3964.
    50. Niu, L.; Li, Z.; Xu, Y.; Sun, J.; Hong, W.; Liu, X.; Wang, J.; Yang, S., Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS applied materials & interfaces 2013, 5 (16), 8044-8052.
    51. Li, W.; Huang, J.; Feng, L.; Cao, L.; Feng, Y.; Wang, H.; Li, J.; Yao, C., Facile in situ synthesis of crystalline VOOH-coated VS2 microflowers with superior sodium storage performance. Journal of Materials Chemistry A 2017, 5 (38), 20217-20227.
    52. Weppner, W.; Huggins, R. A., Determination of the kinetic parameters of mixed‐conducting electrodes and application to the system Li3Sb. Journal of The Electrochemical Society 1977, 124 (10), 1569.
    53. Holzwarth, U.; Gibson, N., The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology 2011, 6 (9), 534-534.
    54. Liu, H.; Xue, Y.; Shi, J.-A.; Guzman, R. A.; Zhang, P.; Zhou, Z.; He, Y.; Bian, C.; Wu, L.; Ma, R., Observation of the kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano letters 2019, 19 (12), 8572-8580.
    55. Hossain, M.; Iqbal, M. A.; Wu, J.; Xie, L., Chemical vapor deposition and temperature-dependent Raman characterization of two-dimensional vanadium ditelluride. RSC Advances 2021, 11 (5), 2624-2629.
    56. Yu, D.; Wei, Z.; Zhang, X.; Zeng, Y.; Wang, C.; Chen, G.; Shen, Z. X.; Du, F., Boosting Zn2+ and NH4+ Storage in Aqueous Media via In‐Situ Electrochemical Induced VS2/VOx Heterostructures. Advanced Functional Materials 2020, 2008743.
    57. Meng, Y.; Zhao, Y.; Wang, D.; Yang, D.; Gao, Y.; Lian, R.; Chen, G.; Wei, Y., Fast Li+ diffusion in interlayer-expanded vanadium disulfide nanosheets for Li+/Mg 2+ hybrid-ion batteries. Journal of Materials Chemistry A 2018, 6 (14), 5782-5788.
    58. Xu, X.; Xiong, F.; Meng, J.; Wang, X.; Niu, C.; An, Q.; Mai, L., Vanadium‐Based Nanomaterials: A Promising Family for Emerging Metal‐Ion Batteries. Advanced Functional Materials 2020, 30 (10), 1904398.
    59. Sun, R.; Wei, Q.; Sheng, J.; Shi, C.; An, Q.; Liu, S.; Mai, L., Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 2017, 35, 396-404.
    60. Chen, Z.; Yang, Q.; Mo, F.; Li, N.; Liang, G.; Li, X.; Huang, Z.; Wang, D.; Huang, W.; Fan, J., Aqueous Zinc–Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity. Advanced Materials 2020, 32 (42), 2001469.
    61. Chao, D.; Zhu, C.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H.; Wang, J.; Wang, R.; Zhang, H., A high‐rate and stable quasi‐solid‐state zinc‐ion battery with novel 2D layered zinc orthovanadate array. Advanced Materials 2018, 30 (32), 1803181.
    62. Jo, J. H.; Sun, Y.-K.; Myung, S.-T., Hollandite-type Al-doped VO1.52(OH)0.77 as a zinc ion insertion host material. Journal of Materials Chemistry A 2017, 5 (18), 8367-8375.
    63. Zhang, K.; Hu, Z.; Liu, X.; Tao, Z.; Chen, J., FeSe2 microspheres as a high‐performance anode material for Na‐ion batteries. Advanced Materials 2015, 27 (21), 3305-3309.
    64. Gogotsi, Y.; Penner, R. M., Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like? ACS Publications: 2018.
    65. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B., Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature materials 2010, 9 (2), 146-151.
    66. Simon, P.; Gogotsi, Y.; Dunn, B., Where do batteries end and supercapacitors begin? Science 2014, 343 (6176), 1210-1211.
    67. Yang, Y.; Tang, Y.; Fang, G.; Shan, L.; Guo, J.; Zhang, W.; Wang, C.; Wang, L.; Zhou, J.; Liang, S., Li+ intercalated V2O5· n H2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy & Environmental Science 2018, 11 (11), 3157-3162.
    68. Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J., Cation-deficient spinel ZnMn2O4 cathode in Zn (CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. Journal of the American Chemical Society 2016, 138 (39), 12894-12901.
    69. Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y.; Qiu, M.; Xu, J.; Liu, Y.; Jiao, L.; Cheng, F., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Letters 2018, 3 (6), 1366-1372.
    70. Xia, C.; Guo, J.; Lei, Y.; Liang, H.; Zhao, C.; Alshareef, H. N., Rechargeable aqueous zinc‐ion battery based on porous framework zinc pyrovanadate intercalation cathode. Advanced Materials 2018, 30 (5), 1705580.
    71. Tang, B.; Fang, G.; Zhou, J.; Wang, L.; Lei, Y.; Wang, C.; Lin, T.; Tang, Y.; Liang, S., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 2018, 51, 579-587.
    72. Hu, P.; Yan, M.; Zhu, T.; Wang, X.; Wei, X.; Li, J.; Zhou, L.; Li, Z.; Chen, L.; Mai, L., Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS applied materials & interfaces 2017, 9 (49), 42717-42722.
    73. Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Islam, S.; Pham, D. T.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z., Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chemistry of Materials 2017, 29 (4), 1684-1694.
    74. Zhao, H.; Hu, C.; Cheng, H.; Fang, J.; Xie, Y.; Fang, W.; Doan, T.; Hoang, T.; Xu, J.; Chen, P., Novel rechargeable M3V2(PO4)3//zinc (M= Li, Na) hybrid aqueous batteries with excellent cycling performance. Scientific reports 2016, 6 (1), 1-10.
    75. Xu, G.-L.; Liu, J.; Amine, R.; Chen, Z.; Amine, K., Selenium and selenium–sulfur chemistry for rechargeable lithium batteries: interplay of cathode structures, electrolytes, and interfaces. ACS energy letters 2017, 2 (3), 605-614.
    76. He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L., Layered VS2 nanosheet‐based aqueous Zn ion battery cathode. Advanced Energy Materials 2017, 7 (11), 1601920.
    77. Deiss, E., Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT. Electrochimica Acta 2005, 50 (14), 2927-2932.
    78. Gupta, T.; Kim, A.; Phadke, S.; Biswas, S.; Luong, T.; Hertzberg, B. J.; Chamoun, M.; Evans-Lutterodt, K.; Steingart, D. A., Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate. Journal of Power Sources 2016, 305, 22-29.
    79. Zhang, L.; Chen, L.; Zhou, X.; Liu, Z., Towards high‐voltage aqueous metal‐ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Advanced Energy Materials 2015, 5 (2), 1400930.
    80. Li, G.; Yang, Z.; Jiang, Y.; Zhang, W.; Huang, Y., Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. Journal of Power Sources 2016, 308, 52-57.
    81. Xu, W.; Zhao, K.; Wang, Y., Electrochemical activated MoO2/Mo2N heterostructured nanobelts as superior zinc rechargeable battery cathode. Energy Storage Materials 2018, 15, 374-379.
    82. Lee, J.; Ju, J. B.; Cho, W. I.; Cho, B. W.; Oh, S. H., Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochimica Acta 2013, 112, 138-143.

    下載圖示 校內:2024-08-30公開
    校外:2024-08-30公開
    QR CODE