簡易檢索 / 詳目顯示

研究生: 佘大年
She, Da-Nian
論文名稱: 應用貝氏回歸分析改良公車旅行時間推估模式─以台中市公車為例
Bayesian Regression model for improving bus travel time estimation in Taichung City
指導教授: 魏健宏
Wei, Chien-Hung
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系碩士在職專班
Department of Transportation and Communication Management Science(on-the-job training program)
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 64
中文關鍵詞: 先進公共運輸服務預估時間旅行時間公車路線特徵分佈貝氏回歸條件概率
外文關鍵詞: APTS, Eestimated time, Travel time, Conditional probabilities, Bus Route, Characteristic distribution
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內先進公共運輸服務(Advanced Public Transportation Services, APTS)系統主要運用歷史平均站間旅行時間推估公車路線預估時間,透過歷史資料進行平假日分群,再依據車輛位置於車輛離站時重新推估後續站點旅行時間,但預估準確性仍受尖離峰車流、行駛距離及駕駛行為影響。且少有針對車載機的GPS資料再利用並提升旅行時間品質的研究。

    因此本研究參考並改良貝氏回歸理論(Bayes' Regression theorem)應用於歷史到站時間推估旅行時間的模型,建構各公車路線不同時段之旅行時間模式。本研究收集每班次的歷史進離站數據計算站間旅行時間並依星期別之尖離峰時區分為四群,透過歸納分析路線上多個管制站點進離站旅行時間數據,依分佈最集中的數據進行推估。並事先將導入的數據進行過濾,主要移除偏移路線、重複回傳或倒序的GPS資料,使分析結果趨近實際狀況。

    本研究中以台中市公車53路線太原火車站至省議會站資料進行分析,透過大量數據收集車輛進離站資料、運用貝氏回歸演算,有效將預估旅行時間誤差控制在可接受之範圍內且有效近似於公車抵達時間。

    Advanced public transport services use historical average travel time data between bus stops to estimate the estimated time of bus routes, use historical data grouped by holiday and workdays, and then reassess the travel time of subsequent stations. The vehicle leaves the station based on the location of the vehicle, but the estimated time is affected by road traffic and driving behavior.
    There are few studies on improving the travel time quality of on-board equipment. Therefore, this study has made reference and improvement on Bayesian regression theory.
    And apply historical data to construct the travel time mode of each bus line in different time periods. According to the peak time and the general time, it is divided into four groups of peak time and general time, and then divided into morning peak hours: 6:00 am to 9:00 am. In the afternoon, the peak time is from 4:00 pm to 8:00 pm, and the general time is from 9:00 am to 16:00 pm and from 8:00 pm to 6:00 pm. The most concentrated data is used to estimate and clear outliers, and the data is close to the actual situation.
    This study takes the Taichung Bus 53 route as the analysis object, and estimates that the estimated time is similar to the actual arrival time.

    第一章 緒論 1 1.1研究動機與背景 1 1.2研究目的 3 1.3研究範圍與限制 5 1.4研究方法與流程 8 第二章 文獻回顧 10 2.1以探針車數據推估平均旅行時間方法 10 2.2運用貝葉斯模型推估旅行時間探討 13 2.3貝葉斯分類器順序抽樣法 15 2.4小結 16 第三章 研究方法 17 3.1資料蒐集與過濾 17 3.1.1 GPS資料特性與定義 17 3.1.2自訂規則法的資料過濾模式 18 3.2旅行時間推估模式 24 3.2.1貝氏預估時間更新架構 28 3.2.2貝氏定理之應用 30 3.2.3 多元回歸之應用 31 3.2.4 研究應用說明 31 3.3評估指標 32 3.3.1平均絕對值誤差百分比 32 3.3.2均方根誤差 33 3.3.3平均絕對誤差 34 3.4小結 34 第四章 實例分析 35 4.1車載裝置資料前處理 35 4.1.1資料前處理 36 4.2建立資料庫 39 4.2.1 路線段次 40 4.2.2路段旅行時間計算 41 4.3 預估地點及路段特性 41 4.4 路段中旅行時間推估 42 4.4.1 案例分析 43 4.4.1.1案例一-尖峰6點至9點 45 4.4.1.2 案例二-尖峰16點至20點 47 4.4.1.3 案例三-離峰9點至16點 49 4.4.1.4 案例四-離峰20點至6點 51 4.5 小結 53 第五章 結論與建議 55 5.1 結論 55 5.2 建議 57 參考文獻 58 英文文獻 58 中文文獻 59 附錄一 60 附錄二 64

    英文文獻
    1. Berrebi, S. J., Watkins, K. E., & Laval, J. A. (2015). A real-time bus dispatching policy to minimize passenger wait on a high frequency route. Transportation Research Part B: Methodological, 81, 377-389.
    2. Broumand, A., Esfahani, M. S., Yoon, B. J., & Dougherty, E. R. (2015). Discrete optimal Bayesian classification with error-conditioned sequential sampling. Pattern Recognition, 48(11), 3766-3782.
    3. El Faouzi, N. E., & Klein, L. A. (2016). Data fusion for ITS: techniques and research needs. Transportation Research Procedia, 15, 495-512.
    4. Julio, N., Giesen, R., & Lizana, P. (2016). Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms. Research in Transportation Economics, 59, 250-257.
    5. Kumar, B. A., Vanajakshi, L., & Subramanian, S. C. (2017). Bus travel time prediction using a time-space discretization approach. Transportation Research Part C: Emerging Technologies, 79, 308-332.
    6. Pu, W., Lin, J., & Long, L. (2009). Real-time estimation of urban street segment travel time using buses as speed probes. Transportation Research Record: Journal of the Transportation Research Board, 2129, 81-89.
    7. Rahmani, M., Jenelius, E., & Koutsopoulos, H. N. (2015). Non-parametric estimation of route travel time distributions from low-frequency floating car data. Transportation Research Part C: Emerging Technologies, 58, 343-362.
    8. Spyridakis, J., Barfield, W., Conquest, L., Haselkorn, M., & Isakson, C. (1991). Surveying commuter behavior: Designing motorist information systems. Transportation Research Part A: General, 25(1), 17-30.
    9. Xiao, G., Juan, Z., & Zhang, C. (2015). Travel mode detection based on GPS track data and Bayesian networks. Computers, environment and urban systems, 54, 14-22.
    10. Yu, B., Lam, W. H., & Tam, M. L. (2011). Bus arrival time prediction at bus stop with multiple routes. Transportation Research Part C: Emerging Technologies, 19(6), 1157-1170.
    11. Zhan, X., Ukkusuri, S. V., & Yang, C. (2016). A Bayesian mixture model for short-term average link travel time estimation using large-scale limited information trip-based data. Automation in Construction, 72, 237-246.
    12. Zhang, K., & Taylor, M. A. (2006). Effective arterial road incident detection: a Bayesian network based algorithm. Transportation Research Part C: Emerging Technologies, 14(6), 403-417.
    中文文獻
    1. 吳東凌(民國104年)。公車即時資訊服務對乘客使用公車行為之影響分析。國立交通大學運輸與物流管理學系學位論文。

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE