| 研究生: |
林洋佑 Lin, Yang-You |
|---|---|
| 論文名稱: |
翼突節設計對垂直軸式風力機葉片性能研究 The study of Protuberances design on Blade Performance of Vertical Axis Wind Turbine |
| 指導教授: |
林三益
Lin, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 垂直軸風機 、計算流體力學 、翼前緣突節 、翼後緣突節 、渦流 |
| 外文關鍵詞: | Vertical Axis Wind Turbine, Computational Fluid Dynamics, Leading Edge Tubercle, Trailing Edge Tubercle, Vortex |
| 相關次數: | 點閱:151 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過計算流體力學(CFD)模型進行NACA0015翼剖面的垂直軸風機葉片性能研究. 透過商用套裝軟體ANSYS Fluent來進行模擬. 選擇壓力耦合方程組的半隱式(SIMPLE)方法演算法來求解不可壓縮納維爾-史托克(Navier-Stokes)方程式. 紊流模型模擬選擇k-ω SST(剪應力傳輸)紊流模型. 使用攻角0°到40°升力和阻力係數的模擬結果進行與實驗的驗證比對, 用以確認邊界層的分布狀況.並進行網格數與時間步的檢查,以確認該模擬的精準度. 為了觀察三維(3D)的效果, 另外發展出一個二維半(2.5D)模型, 並與二維(2D)模型進行比較. 最後, 從翼突節設計的葉片比較直線翼葉片的方式來獲得推力的預測. 總而言之, 使用翼前緣突節葉片垂直軸風機的推力會比直線翼風機的推力更低, 而使用翼後緣突節葉片垂直軸風機的推力會比直線翼風機的推力更高. 隨著風機翼前緣波狀葉片的振幅的增加和波長的降低, 推力值會下降, 而隨著風機翼後緣波狀葉片的振幅和波長的增加, 推力值會上升. 主要由於在風機葉片的突節區域產生的渦流結構所影響.
The performances of a VAWT blade with NACA0015 airfoil section were investigated through the CFD model. The simulations were carried out by the commercial software ANSYS FluentTM. The Semi Implicit Method for Pressure Linked Equations (SIMPLE) algorithm are chosen to solve the solutions of the incompressible Navier-Stokes equations. The k-ω SST (shear stress transport) turbulence model was selected for the turbulence flow simulations. The grid numbers and time step sizes were then examined to confirm the simulation accuracy. To exam the 3D effect, a 2.5D model was additionally developed and compared with 2D model. Finally, the predictions of thrust obtained from the blade with tubercle design were compared with the ones from the straight blade. Overall, the thrusts of VAWT with tubercle leading edge turbine blades were lower than the ones with straight blade, and the thrusts of VAWT with the tubercle trailing edge turbine blades were bigger than the ones with straight blade. The values of the thrust decreased with increasing amplitudes and decreasing wavelengths for the leading edge wavy blade, and the values of thrust increased with increasing amplitudes and wavelengths for the trailing edge wavy blade. We found out that these conditions are due to the structure of the vortices generated at the tubercle region of the turbine blade.
[1] Islam, M., D.S.K. Ting, and A. Fartaj, Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews, 12(4): p. 1087-1109, 2008.
[2] Bai, C.-J., W.-C. Wang, P.-W. Chen, and W.-T. Chong, System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator. Energies, 7(11): p. 7773-7793, 2014.
[3] Strickland, J.H., B.T. Webster, and T. Nguyen, A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study. J. Fluids Eng., 101(4): p. 500-505, 1979.
[4] Wang, L.B., L. Zhang, and N.D. Zeng, A potential flow 2-D vortex panel model: Applications to vertical axis straight blade tidal turbine. Energy Conversion and Management, 48(2): p. 454-461, 2007.
[5] Hirsch, H. and A. Mandal, A cascade theory for the aerodynamic performance of darrieus wind turbines. Wind Eng, 11(3): p. 164-175, 1987.
[6] Lanzafame, R., S. Mauro, and M. Messina, Wind turbine CFD modeling using a correlation-based transitional model. Renewable Energy, 52(0): p. 31-39, 2013.
[7] McLaren, K., S. Tullis, and S. Ziada, Computational fluid dynamics simulation of the aerodynamics of a high solidity, small‐scale vertical axis wind turbine. Wind Energy, 2012.
[8] Dobrev, I. and F. Massouh, CFD and PIV investigation of unsteady flow through Savonius wind turbine. Energy Procedia, 6(0): p. 711-720, 2011.
[9] Lanzafame, R., S. Mauro, and M. Messina, 2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model. Energy Procedia, 45(0): p. 131-140, 2014.
[10] Li, C., S. Zhu, Y.-l. Xu, and Y. Xiao, 2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow. Renewable Energy, 51(0): p. 317-330, 2013.
[11] Biadgo, A.M., A. Simonovic, D. Komarov, and S. Stupar, Numerical and Analytical Investigation of Vertical Axis Wind Turbine FME Transactions, 41: p. 49-58, 2013.
[12] Vassbverg, J., A.K. Gopinath, and A. Jameson. Revising the vertical-axis wind turbine Design using Advanced computational fluid Dynamicsc. in 43rd AIAA ASM. Reno, NV. 2005.
[13] Raciti Castelli, M., A. Englaro, and E. Benini, The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy, 36(8): p. 4919-4934, 2011.
[14] Pedro, H.T. and M.H. Kobayashi. Numerical study of stall delay on humpback whale flippers. in 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. 2008.
[15] Hansen, K.L., R.M. Kelso, B.B. Dally, and E.R. Hassan. Analysis of the Streamwise Vortices Generated Between Leading Edge Tubercles. in Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (6th: 2011: Canberra, Australia). 2011.
[16] Favier, J., A. Pinelli, and U. Piomelli, Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers. Comptes Rendus Mécanique, 340(1–2): p. 107-114, 2012.
[17] Fish, F.E. and J.M. Battle, Hydrodynamic design of the humpback whale flipper. Journal of Morphology, (225): p. 51–60, 1995.
[18] Miklosovic, D.S., M.M. Murray, L.E. Howle, and F.E. Fish, Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 16(5): p. L39, 2004.
[19] Ferziger, J.H. and M. Peric, Computational methods for fluid dynamics. third, rev. edition ed. Berlin: Springer, 1999.
[20] Dropkin, A., D. Custodio, C. Henoch, and H. Johari, Computation of Flow Field Around an Airfoil with Leading-Edge Protuberances. Journal of Aircraft, 49(5): p. 1345-1355, 2012.
[21] Rostamzadeh, N., K. Hansen, R. Kelso, and B. Dally, The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification. Physics of Fluids (1994-present), 26(10): p. 107101, 2014.
[22] Rostamzadeh, N., R. Kelso, B. Dally, and K. Hansen, The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics. Physics of Fluids (1994-present), 25(11): p. 117101, 2013.
[23] Watts, P. and F. Fish. The influence of passive, leading edge tubercles on wing performance. in Proc. Twelfth Intl. Symp. Unmanned Untethered Submers. Technol. Auton. Undersea Syst. Inst. Durham New Hampshire. 2001.
[24] Bai, C.J., W.C. Wang, and P.W. Chen, The Effects of Sinusoidal Leading Edge of the turbine blade on the power coefficient of Horizontal-Axis Wind Turbine (HAWT), 2015 (unpubilshed).
[25] Manwell, J.F., J.G. McGowan, and A.L. Rogers, Wind energy explained: theory, design and application. John Wiley & Sons. pp.83-138, 2010.
[26] Bravo, R., S. Tullis, and S. Ziada, Performance Testing of a Small Vertical-Axis Wind Turbine. Department of Mechanical Engineering, McMaster University.
[27] Blazek, J., Computational Fluid Dynamics: Principles and Applications:(Book with accompanying CD). Elsevier, 2005.
[28] Fluent, I., ANSYS FLUENT 14: theory guide. USA: Fluent Inc, 2012.
[29] Wilcox, D.C., Multiscale model for turbulent flows. AIAA journal, 26(11): p. 1311-1320, 1988.
[30] Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8): p. 1598-1605, 1994.
[31] Patankar, S.V. and D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10): p. 1787-1806, 1972.
[32] Weiss, J.M., J.P. Maruszewski, and W.A. Smith, Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid. AIAA journal, 37(1): p. 29-36, 1999.
[33] White, F.M., Fluid Mechanics, 5th Edition (McGraw-Hill Series in Mechanical Engineering). 5th cd. ed.: Elizabeth A. Jones. pp.467, 2003.
[34] He, X. and G. Doolen, Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder. Journal of Computational Physics, 134(2): p. 306-315, 1997.
[35] Silva, A.L.E., A. Silveira-Neto, and J. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. Journal of Computational Physics, 189(2): p. 351-370, 2003.
[36] Sheldahl, R.E. and P.C. Klimas, Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Sandia National Labs., Albuquerque, NM (USA), 1981.
[37] Yoon, H.S., P.A. Hung, J.H. Jung, and M.C. Kim, Effect of the wavy leading edge on hydrodynamic characteristics for flow around low aspect ratio wing. Computers & Fluids, 49(1): p. 276-289, 2011.
[38] Zhang, L.X., Y.B. Liang, X.H. Liu, Q.F. Jiao, and J. Guo, Aerodynamic Performance Prediction of Straight-Bladed Vertical Axis Wind Turbine Based on CFD. Advances in Mechanical Engineering, 2013: p. 11, 2013.
[39] Bai, C.-J., Y.-Y. Lin, S.-Y. Lin, and W.-C. Wang, Computational fluid dynamics analysis of the vertical axis wind turbine blade with tubercle leading edge. Journal of Renewable and Sustainable Energy, 7(3): p. 033124, 2015.
[40] Corp., H.-V.T. Vertical Axis Small Wind Turbines. 2014 December 31, 2014]; Available from: http://www.hi-vawt.com.tw/en/about_vaswt.html.
[41] Rankine, W.M., On the mathematical theory of combined streams. Proceedings of the Royal Society of London, 19(123-129): p. 90-94, 1870.
校內:2020-07-21公開