簡易檢索 / 詳目顯示

研究生: 馮靖
Feng, Ching
論文名稱: 選擇性雷射熔融鎂鋅鋯合金參數優化與後熱處理:生物相容性、生物降解性、機械性能影響
Influence of Optimization of Selective Laser Melting Parameters and Heat Treatment in Biocompatibility, Biodegradability, and Mechanical Properties of Magnesium Alloys
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 78
中文關鍵詞: 可降解金屬骨植入物ZK60 鎂合金選擇雷射熔化(SLM)生物相容性生物降解性
外文關鍵詞: Degradable metal bone implant, ZK60 magnesium alloy, Selective laser melting (SLM), Biocompatibility, Biodegradability
相關次數: 點閱:62下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨折是全球公共衛生問題。數百萬人因自然疾病和意外傷害引起的骨折而受苦。骨植入物市場預計在2022年至2030年的預測期內以每年6.2%的複合年增長率增長到35.3億美元。像鈦、不銹鋼、鈷鉻合金這樣的金屬骨植入材料因其生物相容性、強度和耐久性而成為最受歡迎的選擇。但它們將永久留在患者體內,可能會導致應力屏蔽效應而最終引發骨質疏鬆症。為了解決這個問題,推出了新一代可降解金屬骨植入材料,如鎂、鐵和鋅。在可降解金屬中,鎂具有接近人體天然骨骼(41-45 GPa)的彈性係數,可防止應力屏蔽效應的發生,並具有適當的生物相容性,但鎂的高降解速度是主要問題。透過添加其他材料來創建用於骨植入的鎂合金可以改善其性能,例如AZ系列(鋁-鋅)、WE系列(稀土-鋅)和ZK系列(鋅-鋯)。像ZK60這樣的ZK系列近年來在研究領域備受關注。在骨科應用中,客製化複雜解剖結構的骨固定器對確保每位患者的癒合效果至關重要。選擇雷射熔融(SLM)是用於金屬積層製造的新技術,它使用高功率雷射逐層熔化和熔合金屬粉末,製造複雜的、精密工程的零件。但由於鎂的高汽化率,目前仍缺乏選擇雷射熔化鎂的研究。這項研究展示了選擇性雷射熔化(SLM)技術在製造ZK60鎂合金複雜結構方面的潛力,達到了超過99.5%的高相對密度。經SLM處理的ZK60硬度與鑄造狀態的ZK60相當,硬度為71.9 ± 4.4 Hv,經過T4熱處理後降至61.7 ± 4.2 Hv。然而,由於選擇性激光熔化過程中產生的缺陷,SLM材料的彎曲測試結果並不理想,且經過T4熱處理後無顯著改變。體外浸泡試驗顯示SLM和SLM+T4材料在第7天的腐蝕速率分別為1.38 ± 0.3 mm/year和1.44 ± 0.4 mm/year,進行了pH值和氫氣評估。動態極化試驗確認SLM ZK60和SLM+T4的腐蝕速率分別高達1.70 mm/year和2.15 mm/year。使用CCK8試劑和細胞附著試驗進行的生物相容性評估顯示SLM和SLM+T4 ZK60具有適宜的生物相容性。總結來說,雖然SLM對鎂金屬展現出了前景,但鑑於鎂及其合金的獨特特性,還需要進一步研究以確立具體的測試標準、製造程序和後處理方法。

    Bone fractures represent a significant global public health concern, affecting millions of individuals due to bone injuries, fractures, and orthopedic conditions. The bone implant market is projected to exhibit substantial growth, reaching USD 35.3 billion in 2022 with a CAGR of 6.2% during the forecast period from 2023 to 2030.
    Metal bone implants, such as titanium, stainless steel, and cobalt-chromium alloys, are widely favored for their biocompatibility, strength, and durability However, their permanent presence within the patient's body necessitates a second surgical intervention, and potentially leading to atrophy due to the stress shielding effect. Furthermore, in cases involving low-load areas, such as the hand, wrist, and specific foot bones, these materials can be overqualified. Additionally, in pediatric orthopedics, where the patient's anatomy is still in a phase of rapid growth and development, traditional materials may not effectively adapt to the evolving physiological needs. To address this issue, new generations of degradable metal bone implants, including magnesium, iron, and zinc, have been introduced.
    Among these degradable metals, magnesium stands out for its mechanical properties close to natural human bone, with elastic modulus of 41-45 GPa, preventing the stress shielding effect. And it also exhibits suitable biocompatibility. Nonetheless, the high degradation rate of magnesium remains the primary concern. One approach to enhance the properties of magnesium for orthopedic applications is the creation of magnesium alloys by adding other materials for example: AZ-series (Aluminum-Zinc), WE-series (Rare Earth-Zinc), and ZK-series (Zinc-Zirconium). The ZK-series, especially ZK60, has gained significant attention in recent years due to their biocompatibility. However, the high degradation rate remains a major concern.
    In orthopedic applications, the ability to fabricate complex structures is essential to ensure precision in individual anatomical fit. Selective laser melting (SLM), a new technology for metal additive manufacturing, involves melting and fusing metal powder layer by layer using a high-powered laser creating complex, and precise parts. Nevertheless, due to the high vaporization of magnesium, limited studies have been conducted on SLM for magnesium.
    This study demonstrates the potential of SLM in fabricating complex structures for ZK60 magnesium alloy, achieving a high relative density of over 99.5%. The hardness of SLMed ZK60 is comparable to that of as-cast ZK60, measuring 71.9 ± 4.4 Hv and decrease to 61.7 ± 4.2 Hv after T4 heat treatment. However, the bending test results for SLMed materials are suboptimal due to defects arising from the SLM process and there is no significant change after T4 heat treatment. In-vitro immersion tests indicate a higher corrosion rate of 1.38 ± 0.3 mm/year and 1.44 ± 0.4 mm/year at day 7 for SLMed and SLMed+T4 materials, along with pH and hydrogen evaluations. Potentiodynamic polarization tests confirm a high corrosion rate of 1.70 mm/year and 2.15 mm/year for SLMed ZK60 and SLMed+T4. Biocompatibility assessments using the CCK8 assay and cell adhesion test reveal suitable biocompatibility for SLMed and SLMed+T4 ZK60. In conclusion, while SLM presents promise for magnesium, further research is necessary to establish specific testing standards, fabrication procedures and post- processing treatment, given the unique characteristics of magnesium and its alloys.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS vi LIST OF TABLES ix LIST OF FIGURES x LIST OF SYMBOLS AND ABBREVIATIONS xii CHAPTER 1 INTRODUCTION 1 1.1 Typical materials for bone fixation device 1 1.1.1 Metals series 1 1.1.2 Polymer series 2 1.1.3 Ceramic series 2 1.2 Biodegradable materials for bone plate 2 1.2.1 Fe base bone plate 3 1.2.2 Zn base bone plate 3 1.2.3 Mg base bone plate 3 1.3 Comparison of mechanical strength among different materials 4 1.4 Biocompatibility of Mg 6 1.5 Corrosion mechanisms of Mg 7 1.5.1 Galvanic corrosion 7 1.5.2 Pitting Corrosion 8 1.6 Mg alloys 9 1.6.1 ZK60 Mg alloys 11 1.7 SLM 11 1.7.1 SLM processing parameters 13 1.8 The influent of processing parameter and the common defects in SLM 14 1.8.1 Balling 14 1.8.2 Pores 18 1.8.3 Crack 20 1.9 SLM for Mg Applications 22 1.9.1 SLM post-processing heat treatment for SLMed Mg 24 1.10 Motivation and aim 26 CHAPTER 2 MATERIALS AND METHODS 28 2.1 Materials and experimental details 28 2.2 Experimental materials and equipment 28 2.2.1 Experimental materials 28 2.2.2 Experimental equipments 29 2.3 Experimental method 31 2.3.1 Preparation of ZK60 SLM sample 31 2.3.2 SLM parameter test 32 2.3.3 Complex structure formability test 34 2.3.4 Porosity analysis 34 2.3.5 T4 heat treatment 35 2.3.6 Mechanical properties test 35 2.3.7 Biodegradable properties 36 2.3.8 Biocompatibility properties 39 CHAPTER 3 RESULTS 41 3.1 SLM parameter test 41 3.2 Porosity morphology 43 3.2.1 High power SLM sample 43 3.2.2 Low power SLM sample 43 3.2.1 Elemental and phase composition of SLMed ZK60 45 3.3 Complex structure formability test 46 3.4 Mechanical properties test 46 3.4.1 Hardness test 46 3.4.2 Bending test 47 3.5 Biodegradable test 49 3.5.1 In vitro corrosion rate 49 3.5.2 pH and Hydrogen evaluation 50 3.5.3 Electrochemical test 50 3.6 Biocompatibility 51 3.6.1 Cell viability test 51 3.6.2 Cell adhesion test 52 CHAPTER 4 DISCUSSION 54 4.1 Formability of SLMed ZK60 54 4.2 Mechanical properties 54 4.3 Biodegradability 56 4.4 Biocompatibility 56 CHAPTER 5 CONCLUSION 58 CHAPTER 6 LIMITATIONS AND FUTURE WORK 59 REFERENCES 61

    1. Grand View Research, Orthopedic Implants Market Size, Share & Trends Analysis Report By Product (Dental Implants, Spinal Implants), By End-use (Hospitals, Outpatient Facilities, Homecare), By Region, And Segment Forecasts, 2023 - 2030. 2023.https://www.grandviewresearch.com/industry-analysis/orthopedic-implants-market.
    2. Antoniac, I., M. Miculescu, V. Mănescu , A. Stere, P.H. Quan, G. Păltânea, et al., Magnesium-Based Alloys Used in Orthopedic Surgery. Materials, 2022. 15(3): p. 1148.
    3. Li, Y., H. Jahr, K. Lietaert, P. Pavanram, A. Yilmaz, L.I. Fockaert, et al., Additively manufactured biodegradable porous iron. Acta Biomaterialia, 2018. 77: p. 380-393.
    4. Sarian, M.N., N. Iqbal, P. Sotoudehbagha, M. Razavi, Q.U. Ahmed, C. Sukotjo, et al., Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioactive Materials, 2022. 12: p. 42-63.
    5. Sezer, N., Z. Evis, and M. Koç, Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. Journal of Magnesium and Alloys, 2021. 9(2): p. 392-415.
    6. Shuai, C., L. Liu, M. Zhao, P. Feng, Y. Yang, W. Guo, et al., Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique. Journal of Materials Science & Technology, 2018. 34(10): p. 1944-1952.
    7. Suchý, J., L. Klakurková, O. Man, M. Remešová, M. Horynová, D. Paloušek, et al., Corrosion behaviour of WE43 magnesium alloy printed using selective laser melting in simulation body fluid solution. Journal of Manufacturing Processes, 2021. 69: p. 556-566.
    8. Wu, C.L., W. Zai, and H.C. Man, Additive manufacturing of ZK60 magnesium alloy by selective laser melting: Parameter optimization, microstructure and biodegradability. Materials Today Communications, 2021. 26: p. 101922.
    9. Yang, Y., C. He, E. Dianyu, W. Yang, F. Qi, D. Xie, et al., Mg bone implant: Features, developments and perspectives. Materials & Design, 2020. 185: p. 108259.
    10. Zhao, D., F. Witte, F. Lu, J. Wang, J. Li, and L. Qin, Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials, 2017. 112: p. 287-302.
    11. Gu, X.N., N. Li, Y.F. Zheng, and L. Ruan, In vitro degradation performance and biological response of a Mg–Zn–Zr alloy. Materials Science and Engineering: B, 2011. 176(20): p. 1778-1784.
    12. Feyerabend, F., 8 - In vitro analysis of magnesium corrosion in orthopaedic biomaterials, in Biomaterials for Bone Regeneration, P. Dubruel and S. Van Vlierberghe, Editors. 2014, Woodhead Publishing. p. 225-269.
    13. Haghshenas, M., Mechanical characteristics of biodegradable magnesium matrix composites: A review. Journal of Magnesium and Alloys, 2017. 5(2): p. 189-201.
    14. Wang, Y., P. Fu, N. Wang, L. Peng, B. Kang, H. Zeng, et al., Challenges and Solutions for the Additive Manufacturing of Biodegradable Magnesium Implants. Engineering, 2020. 6(11): p. 1267-1275.
    15. Payr, E., Beitrage zur Technik der Blutgesfass und Nervennaht nebst Mittheilungen die Verwendung eines Resorbierharen Metalles in der Chirurgie. Arch. Klin. Chir., 1900. 62: p. 67-71.
    16. Abdalla, M., A. Joplin, M. Elahinia, and H. Ibrahim, Corrosion Modeling of Magnesium and Its Alloys for Biomedical Applications: Review. Corrosion and Materials Degradation, 2020. 1(2): p. 219-248.
    17. Li, K., C. Ji, S. Bai, B. Jiang, and F. Pan, Selective laser melting of magnesium alloys: Necessity, formability, performance, optimization and applications. Journal of Materials Science & Technology, 2023. 154: p. 65-93.
    18. Liu, H., D. Li, Y. Zhang, and M. Li, Inflammation, mesenchymal stem cells and bone regeneration. Histochemistry and Cell Biology, 2018. 149(4): p. 393-404.
    19. Wu, Y., Y.M. Wang, D.W. Zhao, N. Zhang, H. Li, J. Li, et al., In vivo study of microarc oxidation coated Mg alloy as a substitute for bone defect repairing: Degradation behavior, mechanical properties, and bone response. Colloids and Surfaces B: Biointerfaces, 2019. 181: p. 349-359.
    20. Song, G.L. and A. Atrens, Corrosion mechanisms of magnesium alloys. Advanced engineering materials, 1999. 1(1): p. 11-33.
    21. Zheng, Y.F., X.N. Gu, and F. Witte, Biodegradable metals. Materials Science and Engineering: R: Reports, 2014. 77: p. 1-34.
    22. Shipley, H., D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O'Donnell, et al., Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. International Journal of Machine Tools and Manufacture, 2018. 128: p. 1-20.
    23. Oliveira, J.P., A.D. LaLonde, and J. Ma, Processing parameters in laser powder bed fusion metal additive manufacturing. Materials & Design, 2020. 193: p. 108762.
    24. Liu, S. and H. Guo, Balling Behavior of Selective Laser Melting (SLM) Magnesium Alloy. Materials, 2020. 13(16): p. 3632.
    25. Li, R., J. Liu, Y. Shi, L. Wang, and W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process. The International Journal of Advanced Manufacturing Technology, 2012. 59(9): p. 1025-1035.
    26. Gu, D. and Y. Shen, Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Materials & Design, 2009. 30(8): p. 2903-2910.
    27. Nudelis, N. and P. Mayr, A Novel Classification Method for Pores in Laser Powder Bed Fusion. Metals, 2021. 11(12): p. 1912.
    28. Weingarten, C., D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, and R. Poprawe, Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. Journal of Materials Processing Technology, 2015. 221: p. 112-120.
    29. Aboulkhair, N.T., N.M. Everitt, I. Ashcroft, and C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive manufacturing, 2014. 1: p. 77-86.
    30. King, W.E., H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, et al., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. Journal of Materials Processing Technology, 2014. 214(12): p. 2915-2925.
    31. Haeckel, F., M. Meixlsperger, and T. Burkert. Technological challenges for automotive series production in laser beam melting. in 2017 International Solid Freeform Fabrication Symposium. 2017. University of Texas at Austin.
    32. Louvis, E., P. Fox, and C.J. Sutcliffe, Selective laser melting of aluminium components. Journal of Materials Processing Technology, 2011. 211(2): p. 275-284.
    33. Tang, M. and P.C. Pistorius, Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. International Journal of Fatigue, 2017. 94: p. 192-201.
    34. Liu, J., B. Yin, Z. Sun, P. Wen, Y. Zheng, and Y. Tian, Hot cracking in ZK60 magnesium alloy produced by laser powder bed fusion process. Materials Letters, 2021. 301: p. 130283.
    35. Maya, J., K. Sivaprasad, G.V. Sarath Kumar, R. Baitimerov, P. Lykov, and K.G. Prashanth, Microstructure, Mechanical Properties, and Corrosion Behavior of 06Cr15Ni4CuMo Processed by Using Selective Laser Melting. Metals, 2022. 12(8): p. 1303.
    36. Wei, K., X. Zeng, Z. Wang, J. Deng, M. Liu, G. Huang, et al., Selective laser melting of Mg-Zn binary alloys: Effects of Zn content on densification behavior, microstructure, and mechanical property. Materials Science and Engineering: A, 2019. 756: p. 226-236.
    37. Liang, J., Z. Lei, Y. Chen, S. Wu, X. Chen, M. Jiang, et al., Formability, microstructure, and thermal crack characteristics of selective laser melting of ZK60 magnesium alloy. Materials Science and Engineering: A, 2022. 839: p. 142858.
    38. Ding, Y., C. Wen, P. Hodgson, and Y. Li, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Journal of materials chemistry B, 2014. 2(14): p. 1912-1933.
    39. Esmaily, M., Z. Zeng, A.N. Mortazavi, A. Gullino, S. Choudhary, T. Derra, et al., A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting. Additive Manufacturing, 2020. 35: p. 101321.
    40. Ng, C., M. Savalani, H.C. Man, and I. Gibson, Layer manufacturing of magnesium and its alloy structures for future applications. Virtual and physical prototyping, 2010. 5(1): p. 13-19.
    41. Ng, C., M. Savalani, M. Lau, and H.C. Man, Microstructure and mechanical properties of selective laser melted magnesium. Applied Surface Science, 2011. 257(17): p. 7447-7454.
    42. Wei, K., Z. Wang, and X. Zeng, Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg–Zn–Zr components. Materials Letters, 2015. 156: p. 187-190.
    43. Shuai, C., Y. Yang, P. Wu, X. Lin, Y. Liu, Y. Zhou, et al., Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy. Journal of Alloys and Compounds, 2017. 691: p. 961-969.
    44. Yang, Y., C. Lu, L. Shen, Z. Zhao, S. Peng, and C. Shuai, In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing. Journal of Magnesium and Alloys, 2023. 11(2): p. 629-640.
    45. Yan, Y., H. Cao, Y. Kang, K. Yu, T. Xiao, J. Luo, et al., Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy. Journal of Alloys and Compounds, 2017. 693: p. 1277-1289.
    46. Li, Z., Z. Peng, Y. Qiu, K. Qi, Z. Chen, and X. Guo, Study on heat treatment to improve the microstructure and corrosion behavior of ZK60 magnesium alloy. Journal of Materials Research and Technology, 2020. 9(5): p. 11201-11219.
    47. Simonelli, M., Y.Y. Tse, and C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V. Materials Science and Engineering: A, 2014. 616: p. 1-11.
    48. Wang, J., F. Witte, T. Xi, Y. Zheng, K. Yang, Y. Yang, et al., Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomaterialia, 2015. 21: p. 237-249.
    49. Zeng, Z., M. Salehi, A. Kopp, S. Xu, M. Esmaily, and N. Birbilis, Recent progress and perspectives in additive manufacturing of magnesium alloys. Journal of Magnesium and Alloys, 2022. 10(6): p. 1511-1541.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE