| 研究生: |
廖偉翔 Liao, Wei-Xiang |
|---|---|
| 論文名稱: |
壓電換能器於低頻發電應用之設計與分析 Design and Analysis of a Piezoelectric Transducer Applied to Low-frequency Electric Power Generation |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 壓電發電器 、懸臂樑 、單層壓電樑 |
| 外文關鍵詞: | Piezoelectric power generator, Unimorph, Cantilever beam |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在人們生活環境中,存在許多低頻率的外界振動,如:車子與船舶行進時的振動、人類行走時產生的晃動…等,而壓電材料具有機電能量轉換的特性,因此可將振動能轉換成電能,以達到能源回收再利用的目的。有鑑於此,本論文針對單層壓電樑(unimorph)以懸臂樑方式夾持,並於自由端放置質量塊,以探討其在低頻振動下的發電特性。在分析方法上,以等效電路模型來說明壓電發電之重要影響參數,並針對懸臂式單層壓電樑,推導出壓電等效電路參數與結構尺寸間的關係,並利用電路模擬軟體PSIM來模擬壓電等效電路對電容進行充電,將可預估其壓電發電的功率,並藉由實驗來驗證此方法的正確性。此外,本論文規劃出一套設計流程,實現在手搖式壓電發電裝置,以驅動一組無線開關,經實驗量測結果,在約頻率4Hz與振幅25mm手搖動的情況下,對33μF的儲能電容充至5V的平均功率為48.5μW,與模擬結果約有6.2%的誤差,以證實此分析方法確實可達到壓電發電功率預測的目的。
There are a lot of different kinds of low-frequency vibration in the ambient environment; for instance, the vibration of cars and boats traveling on rough ground, and the swinging which occur when a human is walking, etc. Piezoelectric materials have the property of electromechanical energy conversion, and can convert vibration energy into electrical energy, thus achieving the objective of recycling useless energy. In view of this condition, this thesis investigates a piezoelectric power generator, and analyzes it’s electric power generation from low-frequency vibrations. With regard to the analytical method, the piezoelectric equivalent circuit model can illustrate the important parameters that influence how the piezoelectric element generates electrical energy. The circuit-simulation software PSIM is utilized to simulate charge of the capacitor, and verify the feasibility of this method in the experiment. In addition, this thesis proposes a set of procedures for designing, and realizing the application of a hand-shake piezoelectric power generator to drive a module of wireless switches.
[1] E.O. Torres1 and G.A. Rincon-Mora, “Long-Lasting, Self-Sustaining, and Energy-Harvesting System-in-Package (SIP) Wireless Micro-Sensor Solution,” International Conference on Energy, Environment and Disasters (INCEED 2005), Charlotte, North Carolina, USA, 2005.
[2] S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis., J.M. Rabaey and P.K. Wright., “Improving Power Output for Vibration-Based Energy Scavengers,” IEEE Pervasive Computing, Vol.4, No.1, pp.28-36, 2005.
[3] R. Amirtharajah and A.P. Chandrakasan, “Self-Powered Signal Processing Using Vibration-Based Power Generation,” IEEE Journal of Solid-State Circuits, Vol.33, No.5, 1998.
[4] B.H. Stark and T.C. Green, “Comparison of SOI power device structures in power converters for high-Voltage low-charge electrostatic microgenerators,” IEEE Transactions on Electron Devices, Vol.52, No.7, pp. 1640-1648, 2005.
[5] J. Kymissis, C. Kendall, J. Paradiso and N. Gershenfeld, “Parasitic Power Harvesting in Shoes,” the Second IEEE International Conference on Wearable Computingt, 1998.
[6] N.S. Shenck, “A Demonstration of Useful Electric Energy Generation from Piezoceramics in a Shoe,” the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the MIT, 1999.
[7] G.W. Taylor, J.R. Burns and S.M. Kammann, W. B. Powers, and T. R. Welsh, “The Energy Harvesting Eel: A Small Subsurface Ocean/River Power Generator,” IEEE Journal of Oceanic Engineering, Vol.26, No.4, 2001.
[8] S. Priya, C.T. Chen, D. Fye and J. Zahnd, “Piezoelectric Windmill: A Novel Solution to Remote Sensing,” Japanese Journal of Applied Physics, Vol.44, No.3, pp.104-107, 2005.
[9] http://www.sunnytec.com.tw/
[10] http://www.kyoto-kci.jp/index.html
[11] H.A. SodaNo, D.J. Inman and G. Park, “Generation and Storage of Electricity from Power Harvesting Devices,” Journal of Intelligent Material Systems and Structures, Vol.16, No.1, pp.67-75, 2005.
[12] G.K. Ottman, H.F. Hofinann and G.A. Lesieutre, “Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode,” IEEE Trans. Power Electron, Vol.18, pp.696-703, 2003.
[13] K. Makihara, J. ONoda and T. Miyakawa, “Low Energy Dissipation Electric Circuit for Energy Harvesting,” Smart Materials and Structures, Vol.15, pp.1493-1498, 2006.
[14] 吳朗,電子陶瓷—壓電,全欣資訊圖書,1994。
[15] http://www.physikinstrumente.com/tutorial/
[16] http://www.aurelienr.com/electronique/piezo/piezo.pdf
[17] 欒桂冬、張金鐸、王仁乾,壓電換能器和換能器陣,北京大學出版社,2005。
[18] F. Lu, H. P. Le and S. P. Lim, “Modeling and Analysis of Micro Piezoelectric Power Generators for Micro-Electromechanical-Systems Application,” Smart Materials and Structures, Vol.13, pp.57-63, 2004.
[19] http://kotalab1.engin.umich.edu/~ckimz/me599_cmechs/
[20] Thunder White Paper, Face International Corporation, 2001.
[21] H.F. Hofmann, “Energy Harvesting Using a Piezoelectric Cymbal Transducer in Dynamic Environment,” Japanese Journal of Applied Physics, Vol.43, No.9A, pp.6178-6183, 2004.
[22] D. Guyomar, A. Badel, E. Lefeuvre and C. Richard, “Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing,” IEEE Transactions on Ultrasonics, and Frequency Control, Vol.52, No.4, pp.584-595, 2005.
[23] S.R. Platt, S. Farritor and H. Haider, “On Low-Frequency Electric Power Generation With PZT Ceramics,” IEEE/ASME Transactions on Mechatronics, Vol.10, No.2, pp.240-252, 2005.
[24] C.B. Williams, and R.B. Yates, “Analysis of a Micro-Electric Generator for Microsystems,” Sensors and Actuators Series A, Vol.52, No.1-3, pp.8-11, 1996.
[25] R.C. Hibbeler, “Mechanics of Materials,” Prentice Hall, 2005.
[26] M.G. Cain, M. Stewart and M.G Gee, “Mechanical and Electric Strength Measurements for Piezoelectric Ceramics: Technical Measurement Notes,” NPL Report CMMT (A) 99, 1998.