簡易檢索 / 詳目顯示

研究生: 陳奕如
Chen, Yi-Ju
論文名稱: 登革病毒對於造血幹細胞的影響
Manipulation of hematopoietic stem cells during dengue virus infection
指導教授: 彭貴春
Perng, Guey-Chuen
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 76
中文關鍵詞: 登革病毒造血幹細胞造血轉錄因子GATA巨核細胞非典型淋巴細胞
外文關鍵詞: dengue virus, hematopoietic stem cell, hematopoietic GATA factor, megakaryocyte, atypical lymphocyte
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革熱是由登革熱病毒感染所引起的疾病,其臨床表現很廣泛,從一般病毒感染症狀至登革出血熱和登革休克症候群,但有些感染者也會有無症狀的現象。先前的研究指出,登革病毒可以感染造血幹細胞及前驅細胞並導致血液相關疾病,如血小板低下症、白血病和非典型淋巴細胞增多等。然而,登革病毒與血液相關疾病之間的機轉還沒有很詳盡的了解。造血作用是由許多轉錄因子共同作用所才能進行,而造血轉錄因子GATA,其中包括GATA-1、GATA-2和GATA-3,它們對於造血作用中的細胞的譜系訂定非常重要。GATA-1和GATA-2與骨髓細胞譜系定型相配合,GATA-1和GATA-2之間的平衡在造血細胞的增殖和分化中是重要的;GATA-3主要表現在T淋巴細胞中。因此,本篇主要想藉由登革病毒感染臍帶血比照沒有感染組,去研究登革病毒感染造血幹細胞後所導致造血作用異常的機制。我們利用登革病毒去感染臍帶血細胞,並在特定時間點收取細胞,然後利用帶有螢光訊號的抗體去染色,再以流式細胞儀去檢測。結果顯示,表達GATA-1和GATA-2的造血幹細胞增加,然而巨核細胞及前驅細胞卻減少,這表明登革病毒感染可能透過改變GATA-1和GATA-2之間的平衡來促使造血幹細胞的增殖,但抑制其分化。再以細胞集落形成法(一種透過幹細胞形成細胞集落的能力去測試幹細胞增殖和分化能力)去檢測,證實登革病毒感染後,髓樣前驅細胞會減少。另一方面,在病毒複製時,表現GATA-3的造血幹細胞也高度增加,這表明在登革病毒感染期間,非典型淋巴細胞增生是可能的現象。從先前的研究報告也指出,儘管在血液中偵測到非典型淋巴細胞並不是登革病毒造成的經典症狀之一,但其濃度卻在登革重症患者體內高度增加。對於登革病毒感染而出現的非典型淋巴細胞的定義仍然不清,因此我們進一步評估了在登革病毒感染後,非典型淋巴細胞在臍帶血細胞中表現的比率,並試圖去定義這群表現在臍帶血細胞中的非典型淋巴細胞的特徵。結果顯示,在登革病毒感染後主要表現出源自未成熟B細胞非典型淋巴細胞,而這群細胞會同時表現出病毒的NS1蛋白及CD117這個幹細胞的細胞表現標記物。另外也有文獻指出說,非典型淋巴細胞可能是源自於T細胞,但是對於這類細胞的表行尚未有人定義出來。因此我們也去檢測病毒的NS1蛋白表現在未成熟T細胞上的情況,發現登革病毒也可去感染未成熟的幹細胞尤其在感染後期,表現出NS1的未成熟T細胞的量有突然增加的現象。總結以上,登革病毒可以透過調控不同造血轉錄因子的平衡來改變細胞族群,同時會抑制巨核細胞譜系細胞的分化,並在感染後增加臍帶血細胞中的非典型淋巴細胞的表現。

    Dengue fever which is caused by dengue virus (DENV) infection results in asymptomatic or with a wide spectrum of clinical manifestations as normal viral infection to severe dengue. Previous study has reported that DENV can infect hematopoietic stem and progenitor cell (HSPC) and lead to hematological diseases, like thrombocytopenia, leukemia, and increased atypical lymphocyte. Hematopoiesis, the formation of blood cellular components, is supported by many transcription factors cooperatively functioning. Hematopoietic GATA factors, including GATA-1, GATA-2 and GATA-3, are essential for hematopoietic lineages determination. GATA-1 and GATA-2 cooperate with myeloid cell lineage commitment, the balance between GATA-1 and GATA-2 is important in proliferation and differentiation of hematopoietic cells, while GATA-3 dictates the production of T lymphocytes. However, the relationship between DENV and hematological diseases is yet to be explored. To investigate the mechanism of DENV infected HSCs leading to abnormal hematopoiesis. Umbilical cord blood (UCB) cells, enriched with HSCs, were challenged with or without DENV. The cells were harvested at specific time points and analyzed by flow cytometry after staining with fluorescence antibodies. GATA-1 and GATA-2 expressing HSCs were increased during DENV infection, while megakaryocytic progenitors were decreased, indicated DENV infection may promote HSC proliferation, but inhibit differentiation by affecting the balance of GATA-1 and GATA-2. Myeloid progenitors were decreased after DENV infection was further confirmed by colony forming assay which is used to test the proliferation and differentiation pattern of hematopoietic progenitors. GATA-3 expressing HSCs were also highly increased during DENV infection, suggesting a likely event of the abnormal lymphocytic cells production. Previous study has reported that atypical lymphocytes (ATLs) are increased in dengue patients, especially in severe forms. We observed that the ATLs were elevated in the early stage of DENV infection, and these cells co-expressed DENV viral protein NS1 and stem cells markers, suggesting DENV could infect immature T cells. In conclusion, DENV infection can alter cell populations through affecting the balance of different transcription factors to suppress megakaryocytic lineage cells differentiation as well as increase ATLs in UCB cells.

    中文摘要 0 Abstract 2 Acknowledgement 4 Table of Contents 6 List of Figures 9 List of Tables 10 Abbreviation Index 11 Introduction 12-18 1.DENV epidemiology 12 2.DENV replication cycle 12 3.DENV induced thrombocytopenia and atypical lymphocytes 13 4.Hematopoietic stem cell (HSC) and DENV 15 5.Congenital Dengue 15 6.Hematopoiesis of HSC 16 7.Hematopoietic GATA factors 17 8.Hypothesis 18 Materials and Methods 19-28 A.Materials 19 1.Cell lines and virus 19 2.Antibodies 19 3.Media and Reagents 21 4.Plastic and glass equipment 23 5.Instruments and machines 25 6.Other buffers 27 B.Methods 29 1.Cell lines culture 29 2.Plaque assay 29 3.UCB specimens 30 4.Ex vivo infection of DENV 30 5.DENV expansion 31 6.Magnetic beads isolation 31 7.Flow cytometry 32 8.Colony forming assay 33 9.Ultraviolet inactivation of DENV 33 10.Statistical analysis 34 Results 35-43 1. Umbilical cord blood cells were infectable by DENV 35 2. The percentage of total cells of UCB cells were no difference after DENV infection 35 3. Hematopoietic stem cells were increased while megakaryocytic progenitors were decreased after DENV infection 36 4. DENV infection may promote hematopoietic stem cells proliferation while inhibiting differentiation by affecting the balance of transcription factors 37 5. GATA-3 expression increased in hematopoietic stem cell population during DENV replication 39 6. The differentiation of myeloid progenitor cells was inhibited during DENV infection 39 7. Atypical lymphocytes were elevated in the early stage of DENV infection 41 8. Atypical lymphocytes derived from immature B cells expressed stem cell marker after DENV infection 42 9. Immature T cells were infectable to DENV and also displayed the potential of regulating the lymphocytosis during DENV infection 43 Discussion 44 References 49 Figures 56 Tables 70

    1. Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Archives of medical research 33, 330-342 (2002).
    2. LaBeaud, A., Bashir, F. & King, C.H. Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections. Population health metrics 9, 1 (2011).
    3. Murray, N.E.A., Quam, M.B. & Wilder-Smith, A. Epidemiology of dengue: past, present and future prospects. Clinical epidemiology 5, 299-309 (2013).
    4. Gubler, D.J. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Tropical medicine and health 39, S3-S11 (2011).
    5. Guo, C., et al. Global Epidemiology of Dengue Outbreaks in 1990–2015: A Systematic Review and Meta-Analysis. Frontiers in cellular and infection microbiology 7, 317 (2017).
    6. Daudé, É., Mazumdar, S. & Solanki, V. Widespread fear of dengue transmission but poor practices of dengue prevention: A study in the slums of Delhi, India. PLOS ONE 12, e0171543 (2017).
    7. Wang, S.-F., et al. Severe dengue fever outbreak in Taiwan. The American journal of tropical medicine and hygiene 94, 193-197 (2016).
    8. Calisher, C.H., et al. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. Journal of general virology 70, 37-43 (1989).
    9. Yung, C.-F., et al. Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, Singapore. The American journal of tropical medicine and hygiene 92, 999-1005 (2015).
    10. Rice, C.M. Flaviviruses: the viruses and their replication. Fields virology, 931-959 (1996).
    11. Perera, R. & Kuhn, R.J. Structural Proteomics of Dengue Virus. Current opinion in microbiology 11, 369-377 (2008).
    12. Kuhn, R.J., et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717-725 (2002).
    13. Simmons, C.P., Farrar, J.J., van Vinh Chau, N. & Wills, B. Dengue. New England journal of medicine 366, 1423-1432 (2012).
    14. Kalayanarooj, S. Clinical Manifestations and Management of Dengue/DHF/DSS. Tropical medicine and health 39, 83-87 (2011).
    15. Lee, T.-H., et al. Potential Harm of Prophylactic Platelet Transfusion in Adult Dengue Patients. PLOS neglected tropical diseases 10, e0004576 (2016).
    16. Organization, W.H., et al. Dengue: guidelines for diagnosis, treatment, prevention and control, (World Health Organization, 2009).
    17. Azeredo, E.L.d., Monteiro, R.Q. & de-Oliveira Pinto, L.M. Thrombocytopenia in dengue: interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediators of inflammation 2015(2015).
    18. Lum, L.C.S., Abdel-Latif, M.E.-A., Goh, A.Y.T., Chan, P.W.K. & Lam, S.K. Preventive transfusion in dengue shock syndrome–is it necessary? The journal of pediatrics 143, 682-684 (2003).
    19. Basu, A., Jain, P., Gangodkar, S.V., Shetty, S. & Ghosh, K. Dengue 2 virus inhibits in vitro megakaryocytic colony formation and induces apoptosis in thrombopoietin-inducible megakaryocytic differentiation from cord blood CD34+ cells. FEMS immunology & medical microbiology 53, 46-51 (2008).
    20. Kho, L., Wulur, H. & Himawan, T. Blood and bone marrow changes in dengue haemorrhagic fever. Paediatrica Indonesiana 12, 31-39 (1972).
    21. Srichaikul, T. & Nimmannitya, S. Haematology in dengue and dengue haemorrhagic fever. Best Practice & Research clinical haematology 13, 261-276 (2000).
    22. Thisyakorn, U., Nimmannitya, S., Ningsanond, V. & Soogarun, S. Atypical lymphocyte in dengue hemorrhagic fever: its value in diagnosis. The southeast asian journal of tropical medicine and public health 15, 32-36 (1984).
    23. Thai, K., et al. High incidence of peripheral blood plasmacytosis in patients with dengue virus infection. Clinical Microbiology and Infection 17, 1823-1828 (2011).
    24. Shetty, A., Kasukurti, P., Vijaya, C. & Jyalakshmi, V. The reactive lymphocyte: a morphological indicator of Platelet counts in Dengue seropostive patients. Annals of pathology and laboratory medicine 3, A217-223 (2016).
    25. Khatri, Kishore, Anil Rajani, and A. R. Khalla. "Plasmacytoid lymphocytes: a diagnostic clue to dengue infection." International journal of science and research 5.3 (2016): 1002-5.
    26. Bierman, H.R. & Nelson, E.R. Hematodepressive virus diseases of Thailand. Annals of internal medicine 62, 867-884 (1965).
    27. La Russa, V.F. & Innis, B.L. 11 Mechanisms of dengue virus-induced bone marrow suppression. Baillière's clinical haematology 8, 249-270 (1995).
    28. Aikat, B. Pathology of mosquito-borne haemorrhagic fever in the Calcutta outbreak. Bulletin of the World Health Organization 35, 48-49 (1966).
    29. Tsai, J.-J., et al. The importance of hematopoietic progenitor cells in dengue. Therapeutic advances in hematology 3, 59-71 (2012).
    30. Punzel, M., et al. Dengue virus transmission by blood stem cell donor after travel to Sri Lanka; Germany, 2013. Emerging infectious diseases 20, 1366-1369 (2014).
    31. Yin, X., Zhong, X. & Pan, S. Vertical transmission of dengue infection: the first putative case reported in China. Revista do instituto de medicina tropical de são paulo 58(2016).
    32. Boussemart, T., Babe, P., Sibille, G., Neyret, C. & Berchel, C. Prenatal transmission of dengue: two new cases. Journal of perinatology 21, 255 (2001).
    33. Ribeiro, C.F., et al. Perinatal transmission of dengue: a report of 7 cases. The journal of pediatrics 163, 1514-1516 (2013).
    34. Nunes, P.C.G., et al. Detection of dengue NS1 and NS3 proteins in placenta and umbilical cord in fetal and maternal death. Journal of medical virology 88, 1448-1452 (2016).
    35. Yao, C.-L., Chu, I.-M., Hsieh, T.-B. & Hwang, S.-M. A systematic strategy to optimize ex vivo expansion medium for human hematopoietic stem cells derived from umbilical cord blood mononuclear cells. Experimental hematology 32, 720-727 (2004).
    36. Hordyjewska, A., Popiołek, Ł. & Horecka, A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology 67, 387-396 (2015).
    37. Bates, D.L., Chen, Y., Kim, G., Guo, L. & Chen, L. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. Journal of molecular biology 381, 1292-1306 (2008).
    38. Scheenstra, M.R., et al. Characterization of hematopoietic GATA transcription factor expression in mouse and human dendritic cells. Blood cells, molecules & diseases 55, 293-303 (2015).
    39. Martin, D.I., Zon, L.I., Mutter, G. & Orkin, S.H. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 344, 444 (1990).
    40. Doré, L.C. & Crispino, J.D. Transcription factor networks in erythroid cell and megakaryocyte development. Blood 118, 231-239 (2011).
    41. Ramaiah, L., Bounous, D.I. & Elmore, S.A. Chapter 50 - Hematopoietic System. in Haschek and Rousseaux's handbook of toxicologic pathology (Third Edition) (eds. Haschek, W.M., Rousseaux, C.G. & Wallig, M.A.) 1863-1933 (Academic Press, Boston, 2013).
    42. Frelin, C., et al. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nature immunology 14, 1037 (2013).
    43. de Souza Pereira, B.B., et al. Prolonged viremia in dengue virus infection in hematopoietic stem cell transplant recipients and patients with hematological malignancies. Transplant infectious disease 19, e12721 (2017).
    44. Tanaka, H., et al. GATA-1 blocks IL-6-induced macrophage differentiation and apoptosis through the sustained expression of cyclin D1 and Bcl-2 in a murine myeloid cell line M1. Blood 95, 1264-1273 (2000).
    45. Panteleev, A. & Vorob'ev, I. Expression of early hematopoietic markers in cord blood and mobilized blood. Tsitologiia 54, 774-782 (2012).
    46. Patel, S.R., Hartwig, J.H. & Italiano, J.E. The biogenesis of platelets from megakaryocyte proplatelets. Journal of clinical investigation 115, 3348-3354 (2005).
    47. Ferreira, R., Ohneda, K., Yamamoto, M. & Philipsen, S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Molecular and cellular biology 25, 1215-1227 (2005).
    48. Tsai, F.-Y., et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221 (1994).
    49. Ku, C.-J., Hosoya, T., Maillard, I. & Engel, J.D. GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry. Blood 119, 2242-2251 (2012).
    50. Lu, J., et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Developmental cell 14, 843-853 (2008).
    51. Chou, S.T., et al. Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood 114, 983-994 (2009).
    52. Sarma, N.J., Takeda, A. & Yaseen, N.R. Colony Forming Cell (CFC) Assay for Human Hematopoietic Cells. Journal of visualized experiments : JoVE, 2195 (2010).
    53. M K, M. & H N, A. Hematological manifestations in dengue fever – an observational study, (2014).
    54. Jampangern, W., et al. Characterization of atypical lymphocytes and immunophenotypes of lymphocytes in patients with dengue virus infection. Asian pacific journal of allergy and immunology 25, 27 (2007).
    55. Liu, T.C., Chan, Y.C. & Han, P. Lymphocyte changes in secondary dengue fever: use of the Technicon H*1 to monitor progress of infection. The southeast asian journal of tropical medicine and public health 22, 332-336 (1991).
    56. Boonpucknavig, S., Lohachitranond, C. & Nimmanitya, S. The pattern and nature of the lymphocyte population response in dengue hemorrhagic fever. The american journal of tropical medicine and hygiene 28, 885-889 (1979).
    57. Datta, L. & Menon, M.P. Plasmacytoid lymphocytes: a clue to dengue diagnosis. Blood 129, 2202-2202 (2017).
    58. Sridharan, A., et al. Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. Journal of virology, JVI. 01156-01113 (2013).
    59. Scripture-Adams, D.D., et al. GATA-3 Dose-Dependent Checkpoints in Early T Cell Commitment. The journal of immunology 193, 3470-3491 (2014).
    60. Seita, J. & Weissman, I.L. Hematopoietic Stem Cell: Self-renewal versus Differentiation. Wiley interdisciplinary reviews. Systems biology and medicine 2, 640-653 (2010).
    61. Weiskopf, D. & Sette, A. T-cell immunity to infection with dengue virus in humans. Frontiers in immunology 5, 93 (2014).
    62. Rathakrishnan, A., et al. Cytokine Expression Profile of Dengue Patients at Different Phases of Illness. PLoS ONE 7, e52215 (2012).
    63. La Russa, V.F. & Innis, B.L. Mechanisms of dengue virus-induced bone marrow suppression. Ballière’s clinical haematology 8, 249-270 (1995).
    64. Ali, N., Usman, M., Syed, N. & Khurshid, M. Haemorrhagic manifestations and utility of haematological parameters in dengue fever: a tertiary care centre experience at Karachi. Scandinavian journal of infectious diseases 39, 1025-1028 (2007).
    65. Silveira, G.F., et al. Human T Lymphocytes Are Permissive for Dengue Virus Replication. Journal of virology 92(2018).
    66. Lin, S.-F., Liu, H.-W., Chang, C.-S., Yen, J.-H. & Chen, T.-P. Hematological aspects of dengue fever. Gaoxiong yi xue ke xue za zhi= The Kaohsiung journal of medical sciences 5, 12-16 (1989).
    67. https://en.wikipedia.org/wiki/Haematopoiesis

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE