簡易檢索 / 詳目顯示

研究生: 李宜倖
Lee, Yi-Hsing
論文名稱: Rho蛋白激酶的抑制對apoE基因剔除小鼠動脈粥狀硬化的病程發展與收縮力的影響
The effects of Rho kinase inhibition on atherosclerosis progression and smooth muscle contractility of apoE-deficient mice
指導教授: 江美治
Jiang, Meei-jyh
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 85
中文關鍵詞: 動脈粥狀硬化
外文關鍵詞: atherosclerosis, apoE, Rho kinase
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動脈粥狀硬化對於冠狀動脈疾病及中風是一潛在機制,此多發性因子疾病的主要表徵乃是慢性發炎。在動脈粥狀硬化的發展病程中,平滑肌細胞會由收縮態轉變為合成態,並有細胞增生及移行的情形。小分子G 蛋白RhoA 及其下游作用分子Rho 激酶在平滑肌收縮的調節扮演重要角色。亦有報告指出,由RhoA 所調控的肌動蛋白聚合作用會使得平滑肌細胞分化標記的基因表現增加。目前已有研究指出,Rho 激酶與動脈粥狀硬化的發展有關。在動脈粥狀硬化的發展病程中,Rho 蛋白激酶的活性是否增加,目前為止並不十分清楚,因此本實驗的目的在探討Rho 蛋白激酶的抑制對apoE 基因剔除小鼠動脈粥狀硬化的病程發展與收縮力的影響。
    本實驗採用apoE 基因剔除母鼠,共分為二組,分別為:一、實驗組,每天給予腹腔注射Rho 激酶抑制劑Y27632 (12.5mg/kg)。二、對照組,每天給予腹腔注射生理食鹽水。兩組動物皆餵食含有0.15%膽固醇的高脂飼料,經過4 週、10 週及20 週後將其犧牲。利用Oil Red-O 染色方法來分析胸主動脈的動脈粥狀硬化粥瘤損傷區域,並進行影像量化分析。在4 週、10 週的Y27632 處理組與對
    照組相比,是沒有差異的。在4 週為1.3 ± 0.38% 與1.0 ± 0.36 %;在10 週為5.6 ± 1.78 % 與8.7 ± 2.48%;但在20 週的Y27632 處理組較對照組,有顯著減少(p<0.05)。在20 週為14.5 ± 2.10% 與23.7 ± 2.53%。將H&E 染色的組織切片,定量分析的結果顯示, 20 週的實驗組內膜層的面積較對照組明顯地減少(p<0.05),而在4 週及10 週的處理組,兩組之間並無顯著差異。顯示長期處理
    Rho 激酶抑制劑Y27632,能有效抑制動脈粥狀硬化的形成及血管內膜層的增厚。為偵測Rho 激酶的抑制對於動脈粥狀硬化組成細胞的影響,我們利用免疫組織染色,染具巨噬細胞專一性的標記蛋白macrophage-specific marker F4/80,發炎反應相關因子NFκB p65 subunit,以及平滑肌細胞的標記蛋白Smooth muscle specific α-actin。結果發現,在偵測巨噬細胞及發炎反應相關因子NFκB p65 的表現方面,相同時間的實驗組與對照組相比較,實驗組標定巨噬細胞及NFκB p65染色的程度較對照組來的淡。在偵測平滑肌細胞專一性標誌蛋白smooth musclespecific α-actin 方面,在20 週處理組,實驗組較對照組的α−actin 表現程度則高。
    - 4 -
    此外我們藉由給予α1−adrenergic 受體致活劑(receptor agonist) phenylephrine 或thromboxane A2 類似物(analogue) U46619 刺激主動脈環引起收縮反應,來探討長期處理Rho 激酶抑制劑Y27632 對主動脈收縮力的影響。另外以乙醯膽鹼(acetylcholine, ACh)所誘發之血管舒張反應,探討Rho 激酶的抑制對主動脈舒張的影響。我們的實驗結果發現,經過20 週的實驗組,由U46619 所引起之主動
    脈收縮曲線較對照組明顯右移,其血管收縮力顯著地受抑制(P<0.05);但由phenylephrine 所引起之主動脈收縮曲線,在兩組之間則無差異。而在血管舒張曲線方面,同時間的實驗組與對照組相比較,則無差異。另外,為偵測Rho 激酶的抑制對於發炎反應的影響,進行血清中與脂肪相關的生化數值分析及介白素-6(Interleukin-6, IL-6)的測定。總膽固醇(TC)、三酸甘油脂(TG)、高密度脂蛋白(HDL-c)、低密度脂蛋白(LDL-c)、極低密度脂蛋白(VLDL)的濃度值在實驗組或對照組,隨著年齡增長皆有穩定性減少的趨勢。實驗組較對照組的生化數值似乎來得高,但兩組間並無差異。血清中促發炎的細胞素IL-6 的濃度,在20 週實驗組的濃度明顯地低於對照組。顯示長期處理Rho 激酶抑制劑Y27632,能有效抑制發炎反應。
    由我們的實驗結果顯示,Rho 蛋白激酶的抑制可減緩ApoE 基因剔除母鼠動脈粥狀硬化的病程發展及發炎反應,並選擇性地抑制平滑肌細胞的收縮力。

    - 1 -
    Atherosclerosis, the underlying mechanism for coronary artery disease
    and stroke, is a multifactorial disorder characterized by chronic
    inflammation. An important hallmark of atherosclerosis is the increased
    proliferation and migration of smooth muscle cells (SMCs) associated
    with the transformation from contractile to synthetic phenotype. The
    changed SMC phenotype is characterized by altered expression levels of
    differentiation markers. The small GTPase RhoA and its downstream
    effector Rho kinase are thought to be key players in the regulation of
    smooth muscle contraction. It was recently reported that RhoA-mediated
    actin polymerization played a major role in regulating gene expression of
    SMC differentiation markers. Rho kinase was recently reported to be
    involved in the development of atherosclerosis. Whether Rho kinase
    activation is increased during atherogenesis remains unknown. This study
    was designed to investigate the effects of long-term Rho kinase inhibition
    on atherosclerosis development and contraction-relaxation profile of
    apoE-deficient mice. ApoE-deficient mice were fed with cholesterol
    -containing diet for 4, 10 or 20 weeks with or without daily peritoneal
    injection of a Rho kinase inhibitor Y-27632 (12.5 mg/kg). Atherosclerotic
    lesion area of thoracic aorta assessed by Oil red-O staining was not
    different between Y27632-treated and saline control groups after 4-week
    (1.3 ± 0.38% vs. 1.0 ± 0.36 % for Y27632-treated and control,
    respectively) or 10-week treatments (5.6 ± 1.78 % vs. 8.7 ± 2.48%), but
    was significantly smaller after the 20-week Y27632 treatments (14.5 ±
    2.10% vs. 23.7 ± 2.53%, p<0.05). Effects of Y27632 treatment on
    inflammatory responses and smooth muscle cell phenotypes were
    investigated with immunostaining of a macrophage-specific marker F4/80,- 2 -
    anti-αsmooth muscle actin and anti- NFκΒ p65 subunit. Macrophage
    infiltration and NFκΒ expression were significantly decreased following
    a 20-week Y27632 treatment. Contraction profiles of aortic rings
    stimulated with two vasoconstrictors, α1-adrenoceptor agonist
    phenylephrine and thromboxane A2 mimetic U46619, and relaxation
    induced by acetylcholine were examined. After 20 weeks of Y27632
    treatment, U46619-stimulated contraction was shifted to the right
    compared to the control while that of phenylephrine was not different
    between two groups. No difference in relaxation profile was detected in
    two groups throughtout the treatment period. Lipid profiles and serum
    concentrations of proinflammatory cytokine interleuken-6 (IL-6) were
    analyzed. The concentrations of total cholesterol (TG), high density
    lipoprotein (HDL-c), low density lipoprotein (LDL-c) and very low
    density lipoprotein (VLDL-c) in Y27632 treatment and control groups
    both decreased with aging, no difference in lipid profiles was detected
    between two groups. In contrast, serum concentrations of IL-6 was
    significantly decreased after 20-week Y27632 treatment compared to the
    control. These results demonstrate that long-term inhibition of Rho kinase
    decreases atherosclerosis progression and inflammatory responses and
    modulate smooth muscle contractility in ApoE-deficient mice.

    英文摘要------------------------------------------------ 1 中文摘要------------------------------------------------ 3 表目錄--------------------------------------------------- 5 圖目錄--------------------------------------------------- 6 附圖目錄------------------------------------------------ 7 緒論------------------------------------------------------ 8 實驗目的------------------------------------------------ 16 材料與方法--------------------------------------------- 17 儀器------------------------------------------------------ 28 藥品------------------------------------------------------ 31 結果------------------------------------------------------ 34 討論------------------------------------------------------ 42 表--------------------------------------------------------- 52 圖--------------------------------------------------------- 58 參考文獻------------------------------------------------ 73 附圖------------------------------------------------------ 80

    1. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a
    marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol.
    2003;23:168-75.
    2. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med.
    1999;340:115-26.
    3. Kao CH, Chen JK, Kuo JS, Yang VC. Visualization of the transport
    pathways of low density lipoproteins across the endothelial cells in
    the branched regions of rat arteries. Atherosclerosis.
    1995;116:27-41.
    4. Pearson JD. Normal endothelial cell function. Lupus.
    2000;9:183-8.
    5. Steinberg D, Witztum JL. Is the oxidative modification hypothesis
    relevant to human atherosclerosis? Do the antioxidant trials
    conducted to date refute the hypothesis? Circulation.
    2002;105:2107-11.
    6. Hirata K, Kikuchi A, Sasaki T, Kuroda S, Kaibuchi K, Matsuura Y,
    Seki H, Saida K, Takai Y. Involvement of rho p21 in the
    GTP-enhanced calcium ion sensitivity of smooth muscle
    contraction. J Biol Chem. 1992;267:8719-22.
    7. Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK.
    Smooth muscle differentiation marker gene expression is regulated
    by RhoA-mediated actin polymerization. J Biol Chem.
    2001;276:341-7.
    8. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M,
    Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Rho-associated
    kinase, a novel serine/threonine kinase, as a putative target for
    small GTP binding protein Rho. Embo J. 1996;15:2208-16.
    9. Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H,
    Nakano T, Kaibuchi K, Ito M. Rho-associated kinase directly
    induces smooth muscle contraction through myosin light chain
    phosphorylation. J Biol Chem. 1997;272:12257-60.
    10. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T,
    Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S.
    Calcium sensitization of smooth muscle mediated by a
    Rho-associated protein kinase in hypertension. Nature.
    1997;389:990-4.
    11. Iizuka K, Yoshii A, Samizo K, Tsukagoshi H, Ishizuka T, Dobashi
    K, Nakazawa T, Mori M. A major role for the rho-associated coiled
    coil forming protein kinase in G-protein-mediated Ca2+
    sensitization through inhibition of myosin phosphatase in rabbit
    trachea. Br J Pharmacol. 1999;128:925-33.
    12. Kandabashi T, Shimokawa H, Miyata K, Kunihiro I, Kawano Y,
    Fukata Y, Higo T, Egashira K, Takahashi S, Kaibuchi K, Takeshita
    A. Inhibition of myosin phosphatase by upregulated rho-kinase
    plays a key role for coronary artery spasm in a porcine model with
    interleukin-1beta. Circulation. 2000;101:1319-23.
    13. Kandabashi T, Shimokawa H, Mukai Y, Matoba T, Kunihiro I,
    Morikawa K, Ito M, Takahashi S, Kaibuchi K, Takeshita A.
    Involvement of rho-kinase in agonists-induced contractions of
    arteriosclerotic human arteries. Arterioscler Thromb Vasc Biol.
    2002;22:243-8.
    14. Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz
    MA, Liao JK. Stroke protection by 3-hydroxy-3-methylglutaryl
    (HMG)-CoA reductase inhibitors mediated by endothelial nitric
    oxide synthase. Proc Natl Acad Sci U S A. 1998;95:8880-5.
    15. Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T.
    Mechanotransduction of rat aortic vascular smooth muscle cells
    requires RhoA and intact actin filaments. Circ Res. 1999;85:5-11.
    16. Sen R, Baltimore D. Inducibility of kappa immunoglobulin
    enhancer-binding protein Nf-kappa B by a posttranslational
    mechanism. Cell. 1986;47:921-8.
    17. Montaner S, Perona R, Saniger L, Lacal JC. Activation of serum
    response factor by RhoA is mediated by the nuclear factor-kappaB
    and C/EBP transcription factors. J Biol Chem. 1999;274:8506-15.
    18. Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal
    JC. Activation of the nuclear factor-kappaB by Rho, CDC42, and
    Rac-1 proteins. Genes Dev. 1997;11:463-75.
    19. Sreenivasan Y, Sarkar A, Manna SK. Mechanism of cytosine
    arabinoside-mediated apoptosis: role of Rel A (p65)
    dephosphorylation. Oncogene. 2003;22:4356-69.
    20. Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page
    M, Kaltschmidt C, Baeuerle PA, Neumeier D. Activated
    transcription factor nuclear factor-kappa B is present in the
    atherosclerotic lesion. J Clin Invest. 1996;97:1715-22.
    21. De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA. The
    transcription factor NF-kappa B and the regulation of vascular cell
    function. Arterioscler Thromb Vasc Biol. 2000;20:E83-8.
    22. Essler M, Retzer M, Bauer M, Heemskerk JW, Aepfelbacher M,
    Siess W. Mildly oxidized low density lipoprotein induces
    contraction of human endothelial cells through activation of
    Rho/Rho kinase and inhibition of myosin light chain phosphatase.
    J Biol Chem. 1999;274:30361-4.
    23. Essig M, Nguyen G, Prie D, Escoubet B, Sraer JD, Friedlander G.
    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors
    increase fibrinolytic activity in rat aortic endothelial cells. Role of
    geranylgeranylation and Rho proteins. Circ Res. 1998;83:683-90.
    24. Seasholtz TM, Majumdar M, Kaplan DD, Brown JH. Rho and Rho
    kinase mediate thrombin-stimulated vascular smooth muscle cell
    DNA synthesis and migration. Circ Res. 1999;84:1186-93.
    25. Sauzeau V, Le Mellionnec E, Bertoglio J, Scalbert E, Pacaud P,
    Loirand G. Human urotensin II-induced contraction and arterial
    smooth muscle cell proliferation are mediated by RhoA and
    Rho-kinase. Circ Res. 2001;88:1102-4.
    26. Funakoshi Y, Ichiki T, Shimokawa H, Egashira K, Takeda K,
    Kaibuchi K, Takeya M, Yoshimura T, Takeshita A. Rho-kinase
    mediates angiotensin II-induced monocyte chemoattractant
    protein-1 expression in rat vascular smooth muscle cells.
    Hypertension. 2001;38:100-4.
    27. Takeda K, Ichiki T, Tokunou T, Iino N, Fujii S, Kitabatake A,
    Shimokawa H, Takeshita A. Critical role of Rho-kinase and
    MEK/ERK pathways for angiotensin II-induced plasminogen
    activator inhibitor type-1 gene expression. Arterioscler Thromb
    Vasc Biol. 2001;21:868-73.
    28. Windler E, Chao Y, Havel RJ. Determinants of hepatic uptake of
    triglyceride-rich lipoproteins and their remnants in the rat. J Biol
    Chem. 1980;255:5475-80.
    29. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft
    JG, Rubin EM, Breslow JL. Severe hypercholesterolemia and
    atherosclerosis in apolipoprotein E-deficient mice created by
    homologous recombination in ES cells. Cell. 1992;71:343-53.
    30. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous
    hypercholesterolemia and arterial lesions in mice lacking
    apolipoprotein E. Science. 1992;258:468-71.
    31. Mallat Z, Gojova A, Sauzeau V, Brun V, Silvestre JS, Esposito B,
    Merval R, Groux H, Loirand G, Tedgui A. Rho-associated protein
    kinase contributes to early atherosclerotic lesion formation in mice.
    Circ Res. 2003;93:884-8.
    32. Bar-Sagi D, Hall A. Ras and Rho GTPases: a family reunion. Cell.
    2000;103:227-38.
    33. Ivan E, Khatri JJ, Johnson C, Magid R, Godin D, Nandi S, Lessner
    S, Galis ZS. Expansive arterial remodeling is associated with
    increased neointimal macrophage foam cell content: the murine
    model of macrophage-rich carotid artery lesions. Circulation.
    2002;105:2686-91.
    34. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI.
    The NF-kappa B signal transduction pathway in aortic endothelial
    cells is primed for activation in regions predisposed to
    atherosclerotic lesion formation. Proc Natl Acad Sci U S A.
    2000;97:9052-7.
    35. Kataoka C, Egashira K, Inoue S, Takemoto M, Ni W, Koyanagi M,
    Kitamoto S, Usui M, Kaibuchi K, Shimokawa H, Takeshita A.
    Important role of Rho-kinase in the pathogenesis of cardiovascular
    inflammation and remodeling induced by long-term blockade of
    nitric oxide synthesis in rats. Hypertension. 2002;39:245-50.
    36. Shibata R, Kai H, Seki Y, Kato S, Morimatsu M, Kaibuchi K,
    Imaizumi T. Role of Rho-Associated Kinase in Neointima
    Formation After Vascular Injury. Circulation. 2001;103:284-289.
    37. Shimokawa H, Morishige K, Miyata K, Kandabashi T, Eto Y,
    Ikegaki I, Asano T, Kaibuchi K, Takeshita A. Long-term inhibition
    of Rho-kinase induces a regression of arteriosclerotic coronary
    lesions in a porcine model in vivo. Cardiovasc Res.
    2001;51:169-77.
    38. Baumann H, Morella KK, Jahreis GP, Marinkovic S. Distinct
    regulation of the interleukin-1 and interleukin-6 response elements
    of the rat haptoglobin gene in rat and human hepatoma cells. Mol
    Cell Biol. 1990;10:5967-76.
    39. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase
    response. Biochem J. 1990;265:621-36.
    40. Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R. Interleukin-6
    exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc
    Biol. 1999;19:2364-7.
    41. Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman
    AG, Bollag G, Sternweis PC. p115 RhoGEF, a GTPase activating
    protein for Galpha12 and Galpha13. Science. 1998;280:2109-11.
    42. Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y. Rho
    activation in excitatory agonist-stimulated vascular smooth muscle.
    Am J Physiol Cell Physiol. 2001;281:C571-8.
    43. Himpens B, Kitazawa T, Somlyo AP. Agonist-dependent
    modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth
    muscle. Pflugers Arch. 1990;417:21-8.
    44. Lefer AM, Tsao PS, Lefer DJ, Ma XL. Role of endothelial
    dysfunction in the pathogenesis of reperfusion injury after
    myocardial ischemia. Faseb J. 1991;5:2029-34.
    45. Vanhoutte PM. Endothelial dysfunction and atherosclerosis. Eur
    Heart J. 1997;18 Suppl E:E19-29.
    46. Fiscus RR. Molecular mechanisms of endothelium-mediated
    vasodilation. Semin Thromb Hemost. 1988;14 Suppl:12-22.
    47. Chan LN, Wang XF, Tsang LL, So SC, Chung YW, Liu CQ, Chan
    HC. Inhibition of amiloride-sensitive Na(+) absorption by
    activation of CFTR in mouse endometrial epithelium. Pflugers
    Arch. 2001;443 Suppl 1:S132-6.
    48. Frid MG, Moiseeva EP, Stenmark KR. Multiple phenotypically
    distinct smooth muscle cell populations exist in the adult and
    developing bovine pulmonary arterial media in vivo. Circ Res.
    1994;75:669-81.
    49. Hao H, Gabbiani G, Bochaton-Piallat ML. Arterial smooth muscle
    cell heterogeneity: implications for atherosclerosis and restenosis
    development. Arterioscler Thromb Vasc Biol. 2003;23:1510-20.
    50. Halayko AJ, Solway J. Molecular mechanisms of phenotypic
    plasticity in smooth muscle cells. J Appl Physiol. 2001;90:358-68.
    51. Kohler A, Jostarndt-Fogen K, Rottner K, Alliegro MC, Draeger A.
    Intima-like smooth muscle cells: developmental link between
    endothelium and media? Anat Embryol (Berl). 1999;200:313-23.
    52. Owens GK. Regulation of differentiation of vascular smooth
    muscle cells. Physiol Rev. 1995;75:487-517.
    53. Li S, Sims S, Jiao Y, Chow LH, Pickering JG. Evidence from a
    novel human cell clone that adult vascular smooth muscle cells can
    convert reversibly between noncontractile and contractile
    phenotypes. Circ Res. 1999;85:338-48.
    54. Kauser K, da Cunha V, Fitch R, Mallari C, Rubanyi GM. Role of
    endogenous nitric oxide in progression of atherosclerosis in
    apolipoprotein E-deficient mice. Am J Physiol Heart Circ Physiol.
    2000;278:H1679-85.
    55. Davis HR, Jr., Compton DS, Hoos L, Tetzloff G. Ezetimibe, a
    potent cholesterol absorption inhibitor, inhibits the development of
    atherosclerosis in ApoE knockout mice. Arterioscler Thromb Vasc
    Biol. 2001;21:2032-8.
    56. Dansky HM, Charlton SA, Harper MM, Smith JD. T and B
    lymphocytes play a minor role in atherosclerotic plaque formation
    in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A.
    1997;94:4642-6.
    57. Reardon CA, Blachowicz L, White T, Cabana V, Wang Y, Lukens J,
    Bluestone J, Getz GS. Effect of immune deficiency on lipoproteins
    and atherosclerosis in male apolipoprotein E-deficient mice.
    Arterioscler Thromb Vasc Biol. 2001;21:1011-6.

    下載圖示 校內:2005-06-07公開
    校外:2005-06-07公開
    QR CODE