| 研究生: |
謝寧鴻 Hsieh, Ning-Hung |
|---|---|
| 論文名稱: |
軌道裂縫破壞分析之回顧 Retrospective on the Fracture Analysis of Rail |
| 指導教授: |
褚晴暉
Chue, Ching-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 應變能密度因子 、應力強度因子 、第一型或第二型應力強度因子 |
| 外文關鍵詞: | Strain Energy Density Factors, Stress Intensity Factors, Mode I & Mode II Stress Intensity Factors |
| 相關次數: | 點閱:111 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文基於國立成功大學機械工程學系破壞力學實驗室過去的研究,回顧軌道力學的破壞分析論文。所有因素都影響軌道的安全,包括裂縫幾何形狀種類、金屬成形和輪/軌接觸表面所產生的塑性變形,磨擦力作用在軌道表面、裂縫表面及滾動方向都將在本文內討論。因此包括了混合模式破壞問題,應變能密度定理來評估三種不同種類(枝節裂縫、表面裂縫及殼狀裂縫)的破壞行為,本文討論強調,在裂縫成長的方向和裂縫裂縫驅動作用力Smin 稱做應變能密度因子。除此之外,軌道疲勞壽命是可以預測的。
Based on the previous researches of NCKU ME Fracture Mechanics Laboratory, this paper reviews the fracture analysis of rail mechanics. All factors that will affect the safety of rails and will be discussed here include the geometries of the cracks, the residual stresses due to metal forming and plastic deformation at wheel/rail contact surface, friction forces acting on the rail surface and the crack surfaces, and the rolling direction. Since it involves mixed mode fracture problems, the strain energy density theory is used to evaluate the fracture behavior of three different crack types: detail crack, surface crack and shell crack. The discussions are emphasizes on the direction of the crack propagation and the crack driving force Smin, called the strain energy density factor. In addition, the fatigue life of rail can also be predicted.
參考文獻
[1] O. Orringer, J. M. Morris and R. K. Steele, “Applied research on rail fatigue and fracture in the United States”, Theoretical and Applied Fracture Mechanics, Vol.1, pp. 23-49, 1984.
[2] O. Orringer, J. Orkisz and Z. Swiderski (Eds), Residual Stress in Rails, Kluwer Academic Publishers, The Netherlands, 1992.
[3] D. F. Cannon and H. Praddier, Rail rolling contact fatigue: Research by the European Rail Research Institute”, Wear, Vol.191, pp.1-13, 1996.
[4] M. M. Yu and L. M. Keer, “Growth of the shell/transverse defect in rails”, ASME J. of Tribology, Vol. 111, pp. 648-654, 1989.
[5] M. Kaneta, Y Murakami and T. Okazaki, “Growth mechanism of subsurface crack due to Hertzian contact”, ASME J. of Tribology, Vol. 1. 108, pp.134-139, 1986.
[6] T. N. Farris, L. M. Keer and R. K. Steele, “ The effect of service loading on shell growth in rails”, J. Mech. Phys. solids, 35, No. 6, pp. 677-700, 1987.
[7] O. Orringer, J. M. Morris and R. K. Steele, “Applied research on rail fatigue and fracture in the United State”, Theoretical and Applied Fracture Mechanicals, vol. 1, pp. 23-49, 1984.
[8] P. Clayton and Y. H. Tang, “Detail fracture growth rates in curved track at the facility for Accelerated Service Testing,” Residual Stress inRails Volume I: Field Experience and Test Results, Kluwer Academic Publishers, The Netherlands, 1992.
[9] J. R. Fleming and N. P. Suh, “Mechanics of crack propagation in delamination wear”, Wear, vol. 44, pp.39-56, 1977.
[10] S.D. O’regan, G. T. Hahn and C. A. Rubin, “The driving force for mode II crack growth under rolling contact”, Wear, vol. 101, pp. 333-346, 1985.
[11] L. M. Keer, M.D. Bryant and G. K. Haritos, “Subsurface and surface cracking due to Hertzian contact”, ASME Journal of Lubrication Technology, vol. 104, pp.347-351, 1982.
[12] L. M. Keer, M.D. Bryant, “ A pitting model for rolling contact fatigue”, ASME Journal Lubrication Technology, vol. 105, pp.198-205, 1983.
[13] J. R. Fleming and N. P. Suh, ”Mechanics of crack propagation in delamination wear”, Wear, Vol. 44, pp.39-56, 1977.
[14] L. M. Keer, M. D. Bryant and G. K. Haritos, “Subsurface cracking and delamination”, in H. S. Cheng and L. M. Keer (eds), Solid Contact and Lubrication, AMD-Vol. 39, ASME, New York, pp.79-95, 1980.
[15] L. M. Keer and M. D. Bryant, “A pitting model for rolling contact fatigue”, ASME J. of Lubrication Technology, Vol. 105, pp.198-205, 1983.
[16] M. Kaneta, M. Suetsugu and Y. Murakami, “Mechanics of surface crack growth in lubricated rolling/sliding spherical contact”, ASME J. of Applied Mechanics, vol. 53, pp. 354-360, 1986.
[17] G. C. Sih and D. Y. Tzou, “Three-dimensional transverse fatigue crack growth in rail head”, Theoretical and Applied Fracture Mechanics, Vol. 1, pp. 103-115, 1984.
[18] G. C. Sih and D. Y. Tzou, “Rail-end bolt hole fatigue crack in three dimensions”, Theoretical and Applied Fracture Mechanics, Vol. 3, pp. 97-111, 1985.
[19] 許益通, 含殼狀裂縫軌道之破壞力學分析, 國立成功大學機械工程研究所碩士論文, 1997.
[20] M. D. Bryant, G. R. Miller and L. M. Keer, “Line contact between a rigid indenter and damaged elastic body”, Q. J. Mech. Appl. Math., Vol.37, Pt.3, pp.467-478, 1984.
[21] R. S. Barsoum, “On the use of isoparametric finite elements in linear fracture mechanics”, Int. J. Numer. Meth. Engng., Vol. 10, pp.25-37, 1976.
[22] I. L. Lim, I. W. Johnston and S. K. Choi, “Comparison between various displacement-based stress intensity factor computation techniques”, International Journal of Fracture, Vol.58, pp. 193-210, 1992.
[23] 劉晉奇, 磨擦效應對軌道裂縫破壞行為之影響, 國立成功大學機械工程研究所碩士論文, 1996.
[24] 郭光凱, 軌道裂紋之液壓效應, 國立成功大學機械工程研究所碩士論文, 1997.
[25] 李坤達, 殘留應力對軌道表面裂縫影響之研究, 國立成功大學機械工程研究所碩士論文, 1998.
[26] 鍾新輝, 滾動接觸下點蝕成形之力學參數研究, 國立成功大學機械工程研究所博士論文, 2001.
[27] 鍾新輝, 含枝節裂紋軌道之破壞力學分析, 國立成功大學機械工程研究所碩士論文, 1996.