| 研究生: |
蘇琬婷 Su, Wan-Ting |
|---|---|
| 論文名稱: |
將區域基礎影像擷取應用至引導式預先分堆之相關性回饋 Heuristic Pre-Clustering Relevance Feedback in Region-Based Image Retrieval |
| 指導教授: |
連震杰
Lien, Jenn-Jier James |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 偏群式鑑別式分析 、以內容為主的影像擷取 、區域基礎影像擷取 、相關性回饋 |
| 外文關鍵詞: | integrated region matching, content-based image retrieval, Group Biased Distriminant Analysis, attention center, relevance feedback, region-based image retrieval |
| 相關次數: | 點閱:130 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相關性回饋 (Relevance Feedback) 和區域基礎影像擷取 (Region-Based Image Retrieval) 是二種被廣泛應用在增進以內容為主的影像擷取 (Content-Based Image Retrieval) 效能的方法。在此篇論文中,將這二種方法做結合,取代現有只將所有正相關性回饋 (Positive Feedback) 視為一堆的做法,在此提出了一個新的方法,試著採用區域基礎影像擷取加入分成多堆正負的相關性回饋。而且為了幫助使用者對正相關性回饋做分堆的動作,系統提供了引導式的預先分堆結果,使用者可再就這些預先分堆結果進行重新分堆的動作。接著,依人類視覺觀點,提出了一個估計區域重要性的方法。最後,再將正負相關性回饋丟入偏群式鑑別式分析 (Group-Biased Discriminant Analysis),重新計算新的特徵空間轉換矩陣。
Relevance feedback (RF) and region-based image retrieval (RBIR) are two widely used methods to enhance the performance of content-based image retrieval (CBIR) systems. In this paper, these two methods are combined. Rather than using only one positive feedback group, the proposed approach embeds the RF in RBIR with multiple positive and negative groups. In order to objectively assist the user in grouping the positive feedbacks, a heuristic pre-clustering result is automatically provided. Using these guiding clusters, the user can easily and subjectively re-group the feedbacks to express his/her particular interest. Furthermore, a region weighting scheme fitting the human visual perception is proposed to enhance the weighting importance of the region whose pixels are closer to the attention center. Finally, Group Biased Discriminant Analysis (GBDA) is modified and applied to the similarity measure between images based on these region-based relevance feedbacks.
[1] C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying,” in IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 24, No.8, pp. 1026-1038, 2002.
[2] Y. Chen and J.Z. Wang, “A Region-Based Fuzzy Feature Matching Approach to
Content-Based Image Retrieval,” in IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 24, No.9, pp. 1252-1267, 2002.
[3] F. Jing, M. Li, H.J. Zhang, and B. Zhang, “Relevance Feedback in Region-Based Image Retrieval,” in IEEE Trans. on Circuits and Systems for Video Tech., Vol. 14, No. 5 , pp. 672-681, May 2004.
[4] F. Jing, M. Li, H.J. Zhang, and B. Zhang, “Unsupervised Image Segmentation Using Local Homogeneity Analysis,” in Proc. IEEE Int. Symp. on Circuits and Systems, vol. 4, pp.145–148, 2002.
[5] J. Li, J.Z. Wang, and G. Wiederhold, “IRM: Integrated Region Matching for Image Retrieval,” in Proc. of the 8th ACM Int. Conf. on Multimedia, pp. 147-156, Oct. 2000.
[6] V. Mezaris, I. Kompatsiaris, and M.G. Strintzis, “Region-based Image Retrieval Using an Object Ontology and Relevance Feedback,” in Eurasip Journal on Applied Signal Processing, vol. 2004, No. 6, pp. 886-901, 2004.
[7] L. Ma, Q. Zhou, D. Chelberg, and M. Celenk, “Shape-Based Image Retrieval with Relevance Feedback,” in Proc. IEEE Int. Conf. on Multimedia and Expo, Vol. 2, pp. 779-782, June. 2004.
[8] W.Y. Ma and B.S. Manjunath, “NETRA: A Toolbox for Navigating Large Image
Databases,” in Proc. IEEE Int. Conf. on Image Processing, Vol. I, Santa Barbara, CA, pp. 568–571, Oct. 1997.
[9] Y.F. Ma, and H.J. Zhang, “Contrast-Based Image Attention Analysis by Using Fuzzy Growing,” in Proc. of the 11th ACM Int. Conf. on Multimedia, pp. 734-381, Nov. 2003.
[10] W. Niblack et al., “The QBIC Project: Querying Images by Content Using Color, Texture, and Shape,” in Proc. SPIE, Vol. 1908, San Jose, CA, pp. 173–187, Feb. 1993.
[11] M. Nakazato, and T.S. Huang, “Extending Image Retrieval With Group-Oriented Interface,” in Proc. IEEE Int. Conf. on Multimedia and Expo, Vol. 2, pp. 201-204, Aug. 2002.
[12] A. Natsev, R. Rastogi, and K. Shim, “WALRUS: A Similarity Retrieval Algorithm for Image Databases,” in Proc. ACM SIGMOD Int. Conf. Management of Data, pp. 395–406, 1999.
[13] A. Pentland, R. Picard, and S. Sclaroff, “Photobook: Content-based Manipulation of Image Databases,” in Proc. SPIE Storage and Retrieval for Image and Video Databases II, San Jose, CA, pp. 34–47, Feb. 1994.
[14] Y. Rui and T.S. Huang, “Optimizing Learning in Image Retrieval,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Vol. 1, South Carolina, pp. 236-243, June 2000.
[15] Y. Rui, T.S. Huang, M. Ortega, and S. Mehrotra, “Relevance Feedback: A Power Tool for Interactive Content-Based Image Retrieval,” in IEEE Trans. on Circuits and Systems for Video Tech., Vol. 8, No. 5, pp. 644-655, Sep. 1998.
[16] J.R. Smith, and S.F. Chang, “Transform Features for Texture Classification and Discrimination in Large Image Databases,” in Proc. IEEE Int. Conf. on Image Processing, pp. 407-411, Nov. 1994.
[17] M. Stricker, and M. Orengo, “Similarity of Color Images,” in Proc. SPIE Storage and Retrieval for Image and Video Databases, pp. 381-392, Feb. 1995.
[18] Y. Sun, and S. Ozawa, “Semantic-meaningful Content-Based Image Retrieval in Wavelet Domain,” in Proc. of the 5th ACM SIGMM Int. Workshop on Multimedia Info. Retrieval, pp. 122-129, Nov. 2003.
[19] Z. Su, H.Z. Zhang, S. Li, and S. Ma, “Relevance Feedback in Content-Based Image Retrieval: Bayesian Framework, Feature Subspaces, and Progressive Learning,” in IEEE Trans. on Image Processing, Vol. 12, No. 8, pp. 924-937, 2003.
[20] M.E. Wood, N.W. Campbell, and B.T. Thomas, “Iterative Refinement by Relevance Feedback in Content-based Digital Image Retrieval,” in Proc. of the 5th ACM Int. Conf. on Multimedia, Bristol, U.K., pp. 13–20, Sept. 1998.
[21] H.W. Yoo, S.H. Jung, D.S. Jang, and Y.K. Na, “Extraction of Major Object Features Using VQ Clustering for Content-based Image Retrieval,” in Pattern Recognition, pp. 1115-1126, 2002.
[22] T. Yoshizawa and H. Schweitzer, “Long-Term Learning of Semantic Grouping from Relevance Feedback,” in Proc. of the 6th ACM SIGMM Int. Workshop on Multimedia Information Retrieval, New York, NY, USA, pp. 165–172, Oct. 2004.
[23] X.S. Zhou and T.S. Huang, “Small Sample Learning during Multimedia Retrieval Using BiasMap,” in Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, Hawaii, pp. 11-17, Dec. 2001.
[24] Y. Wu, Q. Tian, and T.S. Huang, “Discriminant EM Algorithm with Application to Image Retrieval,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Vol. 1, South Carolina, pp. 222-227, June, 2000.