簡易檢索 / 詳目顯示

研究生: 白忠勝
Pai, Chung-Sheng
論文名稱: 廢棄環氧樹脂固態封裝材料中二氧化矽之資源化研究
Recovery of Silicon Dioxide from Spent Epoxy Molding Compound
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 環氧樹脂固態封裝材料壓模膠二氧化矽鹼浸漬鹼熔融
外文關鍵詞: Spent epoxy molding compound, Silicon dioxide, Alkali leaching, Alkali fusion
相關次數: 點閱:159下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IC封裝製程中會產生廢壓模膠,其主要成分為二氧化矽,其餘為環氧樹脂、硬化樹脂等有機物質,故資源化處理有限。本研究針對廢壓模膠中佔70wt%-90wt%之二氧化矽進行回收。透過樣品初步檢測其性質,再經過預處理試驗、鹼浸漬實驗、鹼熔融實驗、產物分析進行研究。
    首先將廢壓模膠粉末破碎及球磨至微米級粉末,並進行SEM、XRD、XRF、TG-DTA、FTIR及LS等性質分析,作為後續實驗之參考依據。
    預處理試驗中探討廢壓模膠回收之可行性,分別進行NMP浸漬、硫酸浸漬及熱處理等三種試驗,由於NMP及硫酸浸漬實驗其有機物分解率分別僅55.4%、36.7%,並且進行熱處理試驗時,透過SEM、FTIR、TG-DTA及廢棄物中灰分、可燃分測定等證明,若將廢壓模膠粉末以750℃進行熱處理,是能有效去除有機物質以利於後續之純化合成二氧化矽。
    鹼浸漬實驗之最佳條件為取5g之經750℃焙燒的樣品加入7N氫氧化鈉溶液150ml即固液比(g/ml)1/30浸漬於90℃的恆溫水槽5小時,其二氧化矽萃取率為95.17%,純度為92.7%,又粉末粒徑之D50為47.55µm。
    鹼熔融實驗之最佳條件為取5g之經750℃焙燒的樣品與氫氧化鈉固體以劑量比1/9混合攪拌均勻,置於鎳坩堝加蓋放入高溫爐,以500℃焙燒持續3小時,其萃取率達99.1%,純度為88.5%,又粉末粒徑之D50為41.61µm。
    最後將產物進行分析發現,仍為非結晶型二氧化矽,且球形顆粒相互團聚,主要官能基為氫氧基及Si-O-Si。

    In the IC packaging process, spent epoxy molding compound is produced. The main composition is silicon dioxide, and the rest are organic materials such as epoxy resin and hardening resin, and the recovery methods for it is limited at present. In this study, 70% to 90% by weight of silicon dioxide in the spent epoxy molding compound was recycled.
    First, the spent epoxy molding compound was crushed and ball-milled to a micron-sized powder, and then analyzed by SEM, XRD, XRF, TG-DTA, FTIR and LS, as a reference for subsequent experiments.
    In the pretreatment process, the decomposition rate of organic matter in NMP and sulfuric acid leaching experiment was only 55.4% and 36.7%, respectively. If the spent epoxy molding compound is heat-treated at 750°C, the organic substances was effectively removed and facilitate the subsequent purification and synthesis of silicon dioxide process.
    Under optimal conditions, the alkali leaching experiment resulted in a silicon dioxide extraction rate of 95.17%, and purity of 92.7%. The alkali fusion experiment obtained a silicon dioxide extraction rate of 99.1%, and a purity of 88.5%.
    Finally, the obtained product was analyzed and found to be amorphous silicon dioxide. The spherical particles agglomerated with each other in this product, and the main functional groups on surface were hydroxyl group and Si-O-Si.

    摘要 I 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XV 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 3 第二章 理論基礎與前人研究 4 2-1 環氧樹脂固態封裝材料(壓模膠) 4 2-1-1 廢壓模膠(Spent Epoxy Molding Compound)來源 4 2-1-2 壓模膠成分[4-9] 6 2-1-3 廢壓模膠資源化技術 10 2-2 二氧化矽(SiO2) 11 2-2-1 二氧化矽之基本性質[12, 13] 11 2-2-2 合成二氧化矽之方法[16] 14 2-2-3 萃取二氧化矽之化學反應過程[19] 15 2-3 濕式冶煉法(Hydrometallurgy)[20] 16 2-3-1 預處理[21] 16 2-3-2 浸漬(Leaching)[23] 17 2-3-3 固液分離[23-25] 18 2-4 鹼熔法(Alkali Fusion) 19 2-5 去除固化環氧樹脂之方法[26] 19 2-6前人研究 20 2-6-1材料分析 20 2-6-2 預處理 23 2-6-3 純化及回收 24 第三章 實驗材料與方法 30 3-1實驗材料與設備 30 3-1-1實驗材料 30 3-1-2實驗藥品 31 3-1-3 實驗設備 31 3-1-4 分析儀器 32 3-2實驗架構 35 3-3實驗方法與步驟 36 3-3-1 廢壓模膠原樣性質分析 36 3-3-2 廢壓模膠預處理試驗 36 3-3-3 預處理後樣品鹼浸漬實驗 37 3-3-4 預處理後樣品鹼熔融實驗 37 3-3-5二氧化矽之萃取率及純度檢測[36] 38 第四章 結果與討論 39 4-1 廢壓模膠樣品分析 39 4-1-1 XRD結晶相分析 40 4-1-2 XRF元素分析 41 4-1-3 TG-DTA熱分析 43 4-1-4 FTIR 官能基分析 44 4-1-5 LS 粒徑分析 45 4-2 廢壓模膠預處理試驗 46 4-2-1廢壓模膠中灰分、可燃分之測定 46 4-2-2 NMP浸漬試驗 47 4-2-3硫酸浸漬試驗 50 4-2-4熱處理 52 4-3 預處理後樣品鹼浸漬實驗 56 4-3-1 浸漬溫度對二氧化矽萃取率的影響 56 4-3-2 氫氧化鈉濃度對二氧化矽萃取率的影響 57 4-3-3 固液比對二氧化矽萃取率的影響 59 4-3-4 浸漬時間對二氧化矽萃取率的影響 60 4-4-5 鹼浸漬最佳條件 62 4-4 預處理後樣品鹼熔融實驗 64 4-4-1 焙燒溫度對二氧化矽萃取率的影響 64 4-4-2 劑量比對二氧化矽萃取率的影響 66 4-4-3 焙燒時間對二氧化矽萃取率的影響 67 4-4-4 鹼熔融最佳條件 68 4-5 二氧化矽產物分析 70 4-5-1 XRD結晶相分析 71 4-5-2 FTIR官能基分析 73 4-5-3 HRA-SEM分析 74 第五章 結論 76 參考文獻 78

    1. 林國權, 循環經濟概念下全球廢棄物回收市場與永續性技術的發展趨勢, in 工業材料雜誌. 2018.
    2. 半導體封裝業資源化應用技術手冊, ed. 經濟部工業局;財團法人台灣綠色生產力基金會,陳昭義.2004.
    3. 張致吉. 環氧樹脂材料市場發展趨勢之ㄧ−半導體構裝用固態模封材料. 2018.
    4. Komori, S. and Y. Sakamoto, Development trend of epoxy molding compound for encapsulating semiconductor chips, in Materials for Advanced Packaging. Springer. p. 339-363.2009.
    5. 李秋土, 環氧樹脂之製造及應用, in 電路板資訊第十五期.
    6. 王春山, 環氧樹脂之簡介與最近的發展, in 化工技術第三卷第一期1995.
    7. 工研院IEK中心, 環境保護形耐燃及PCB用環氧樹脂介紹.
    8. 張景宜, 環氧樹脂固態封裝材料(Epoxy Molding Compound)於IC和光電(Optoelectronics) Packaging之應用研究. Chemical Engineering . 51(2): p. 34-47.2004.
    9. Lau, J.H.W.,C P ; Prince, John L ; Nakayama, Wataru, Electronic packaging : design, materials, process, and reliability. Electronic Packaging and Interconnection Series. New York, NY : McGraw-Hill, 1998. - 496 p.
    10. 李易書. 水泥工業 產業廢棄物資源化政策與願景. 2018.
    11. Xu, W. and S. Lu. Recycling of waste cured epoxy molding compound as a filler in poly (vinyl chloride) composites. in 2010 International Conference on Chemistry and Chemical Engineering. IEEE.2010.
    12. 蘇明德, in 科學發展,553期. 2019.
    13. https://en.wikipedia.org/wiki/Silicon_dioxide.
    14.http://www.wikiwand.com/zh-mo/%E4%BA%8C%E6%B0%A7%E5%8C%96%E7%A1%85.
    15. https://it.wikipedia.org/wiki/Vetro.
    16. 賴駿瑩, 水玻璃製造奈米級二氧化矽膠體方法的探討. 2010.
    17. G. Kolbe, P.D.T., Friedrich-Schiller-Universität Jena,Germany, 1956.
    18. Stöber, W., et al., Controlled growth of monodisperse silica spheres in the micron size range. 1968. 26(1): p. 62-69.1968.
    19. Japan, 森.J.J.o.t.C.S.o., Extraction of silicon dioxide from waste colored glasses by alkali fusion using sodium hydroxide.111(1294): p. 376-381.2003.
    20. 濕法冶金的研究與發展.冶金工業發行.1998.
    21. 蘇英源, 冶金學,全華科技圖書股份有限公司.2001.
    22. 彭榮秋, 重金屬冶金學,中南大學出版社.1991
    23. 林偉凱, 蔡., 金屬資源再生技術發展概況分析,財團法人金屬工業研究發展中心.2009.
    24. Shugar, G.J., Chemical technicians' ready reference handbook. McGraw-Hill.1981.
    25. Pavia, D., G. Lampman, and G. Kriz, Introduction to organic laboratory techniques. a contemporary approach, Saunders Golden Sanburst Series., WB Saunders Company, Philadelphia, London, Toronto.1976.
    26. Inc, E.T., 2009.
    27. Shokri, B., M.A. Firouzjah, and S. Hosseini. FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD. in Proceedings of 19th international symposium on plasma chemistry society, Bochum, Germany. 2009.
    28. Wath, S., et al., Separation of WPCBs by dissolution of brominated epoxy resins using DMSO and NMP: A comparative study. 280: p. 391-398.2015.
    29. Ma, Y., S.J.P.d. Nutt, and stability, Chemical treatment for recycling of amine/epoxy composites at atmospheric pressure. 153: p. 307-317.2018
    30. Mori, H.J.J.o.m.s., Extraction of silicon dioxide from waste colored glasses by alkali fusion using potassium hydroxide.38(16): p. 3461-3468.2003.
    31. Zainuri, M.J.M.S.-P., Synthesis of SiO2 nanopowders containing quartz and cristobalite phases from silica sands.33(1): p. 47-55.2015.
    32. AHMAD T, M., AHMAD,J.Nanoparticles.2013.
    33. Krysztafkiewicz, A., B. Rager, and T.J.J.o.m.s. Jesionowski, The effect of surface modification on physicochemical properties of precipitated silica. 32(5): p.1333-1339.1997.
    34. Jesionowski, T.J.J.o.m.p.t., Synthesis and characterization of spherical silica precipitated via emulsion route.203(1-3): p. 121-128.2008.
    35. 李超陽,胡光勝,廉尚斌,胡瓦提,顧宏新, 低溫堿溶法提取粉煤灰中二氧化硅和氧化鋁的實驗研究. 山東化工, 2017. 04.
    36. 唐志陽, 陶瓷原料中二氧化硅含量的測定方法.佛山陶瓷, 2008. 04.

    下載圖示 校內:2022-11-21公開
    校外:2022-11-21公開
    QR CODE