簡易檢索 / 詳目顯示

研究生: 邱旭晨
CIOU, SYU-CHEN
論文名稱: 光電二極體應用於側流免疫層析法量測人類血紅蛋白之研究
Study of Detecting Human Hemoglobin by Photodiodes Based on Lateral Flow Immunoassay
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 光電二極體側流免疫層析分析人類血紅蛋白田口方法
外文關鍵詞: photodiode, lateral flow immunochromatographic assay, human hemoglobin, Taguchi method
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用光電二極體作為感測元件,結合側流層析免疫反應試紙,以膠體金的呈色訊號作為檢測標的,開發一具有高線性度、高靈敏度及穩定度之免疫呈色判讀系統,使免疫判讀於定量分析上更加精確。系統包含硬體及軟體兩部分,硬體方面裝載德州儀器MSP430G2553微控制器、光電二極體、LED光源、LCD液晶顯示器、整合式電路板及光學暗房。程式部分使用C程式語言搭配Code Composer Studio (CCS)整合開發環境撰寫訊號數位化處理與周邊元件控制程式。研究中以符合膠體金吸收光譜之光電二極體元件,進行光電訊號轉換並將其量化計算,以對側流層析免疫反應試紙Control、Test線(C、T線)上的膠體金接合濃度進行定量分析,並反推檢體之抗原含量。本研究導入田口方法進行量測最佳化實驗設計,結果顯示量測靈敏度提高31.9%,品質損失降低為57.2%。在對人類血紅蛋白樣本的量測實驗中,系統能正確分析C、T線數值,並建立抗原濃度與訊號量測值之關係曲線,該曲線可作為量化分析之依據,其決定係數(Coefficient of determination)達0.9663,在濃度極限偵測下,可量測最低濃度50 ng/mL,成功突破閾值100 ng/mL限制,並在重複實驗下仍可保持良好的穩定度(變異係數<15%)。

    This thesis presents a highly sensitive system for detecting human hemoglobin (hHb) in feces. Combined with the lateral flow immunochromatographic assay, the system uses photodiodes to quantify hHb concentration by the colorimetric method. The system is composed of hardware and software parts, and the layout was designed by SolidWorks and AutoCAD. The analyzing programs are compiled by C language and loaded into MSP430G2553 microcontroller. After verification of each parts of the system, we find that the system detected hHb antigen from 450 ng/mL to 50 ng/mL successfully. The coefficient of variation of the experiment results is less than 15%, indicating good stability. In the Taguchi method, we studied the influence of photodiode feedback impedance, light intensity and light-shielding structure parameters on sensing the test-strip coloration. The analysis shows that the structure parameters were important factors in the detection system.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 圖目錄 XIV 表目錄 XIX 縮寫表 XXI 第一章 緒論 1 1-1 研究背景 1 1-2 免疫分析方法 3 1-2-1 免疫分析基本理論 3 1-2-2 抗原與抗體定義 3 1-2-3 抗原與抗體結合力 5 1-2-4 免疫分析檢測種類 6 1-3 糞便潛血試驗介紹 7 1-4 側流層析免疫反應試紙 8 1-5 文獻回顧 10 1-5-1 呈色判讀簡介 10 1-5-2 光電二極體簡介 14 1-5-3 田口方法簡介 19 1-5-3 免疫呈色判讀之發展 20 1-6 研究動機與目的 25 1-7 研究架構 27 第二章 呈色判讀系統之系統設計與製作 29 2-1呈色判讀系統之系統流程 29 2-1-1 訊號量化與分析 30 2-1-2 讀取C、T線之演算 34 2-2 呈色判讀電路設計 36 2-2-1 光電訊號放大電路設計 36 2-2-2 電源電路設計 42 2-3 呈色判讀系統硬體製作 43 2-3-1 裝置架構設計 43 2-3-2 光學暗房設計 45 2-4 系統開發環境建立 48 2-4-1 開發微控制器選用 48 2-4-2 MSP430G2553微控制器 49 第三章 實驗與研究方法 50 3-1 實驗儀器與設備 50 3-1-1 二氧化碳雷射雕刻機 50 3-1-2 示波器 51 3-1-3 直流電源供應器 52 3-1-4 光電二極體 52 3-1-5 LCR高精度量測儀 54 3-2 實驗藥品 55 3-3 光電二極體照度線性度測試 56 3-4 呈色判讀測試 57 3-4-1 暗房設計確效測試 58 3-4-2 色階線性度測試 60 3-4-3 色階靈敏度測試 61 3-4-4 色階偵測極限測試 62 3-5 呈色訊號量測最佳化實驗 63 3-5-1 田口方法 63 3-5-2 理想機能與S/N比 64 3-5-3 控制因子 66 3-5-4 直交表 67 3-6 市售FOB試紙測試 68 第四章 結果與討論 69 4-1 光電二極體照度線性度測試結果 69 4-1-1 光電壓模式測試結果 69 4-1-2 光電導模式測試結果 72 4-2 暗房設計確效測試結果 75 4-2-1 T線判讀相互干擾測試結果 75 4-2-2 C線判讀相互干擾測試結果 77 4-3 C、T線判讀測試結果 79 4-3-1 色階線性度測試結果 79 4-3-2 色階靈敏度測試結果 82 4-3-3 色階偵測極限測試結果 85 4-4 呈色訊號量測最佳化實驗結果 87 4-4-1 控制因子及水準 87 4-4-2 L9(34)直交表 87 4-4-3 β與S/N比因子反應分析 90 4-4-4 β與S/N比變異分析 93 4-4-5 預測值與確認實驗 93 4-4-6 品質損失計算 98 4-5 體外試劑測試 99 4-5-1 FOB試紙測試結果 99 4-5-2 濃度反推值計算 101 第五章 結論與建議 102 5-1 結論 102 5-2 建議 104 參考文獻 106

    [1]T. Porstmann and S. T. Kiessig, “Enzyme immunoassay techniques and overview,” Journal of Immunological Methods, 150, pp. 5-21, 1992.
    [2]何敏夫,臨床生化學,合記圖書出版社,1992。
    [3]R. H. Garrett and C. M. Grisham, Biochemistry, Saunders College Publishing, 1995.
    [4]廖國棠,金奈米粒子標記物在免疫分析、DNA 序列分析及微管道晶片系統分析上的應用,國立中山大學化學研究所博士論文,民國九十四年。
    [5]E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes,” Journal of Immunology, 109, pp. 129-135, 1972.
    [6]T. Watanabe, Y. Ohkuno, H. Matsuoka, H. Kimura, Y. Sakai, Y. Ohkaru, T. Tanaka, and Y. Kitaura, “Development of a simple whole blood panel test for detection of human heart –type fatty acid-binding protein,” Clinical Biochemistry, 34, pp. 257-263, 2001.
    [7]M. Hedenfalk, P. Adlercreutz, and B. Mattiasson, “Modulation of the measuring range of a radioimmunoassay using an organic water two phase system,” Analytica Chimica Acta, 341, pp. 269-274, 1997.
    [8]衛生福利部國民健康署(2018),104年癌症登記年報,台北市:衛生福利部國民健康署。
    [9]衛生福利部統計處(2018),105年死因統計年報,台北市:衛生福利部統計處。
    [10]J. S. Mandel, J. H. Bond, T. R. Church, et al, “Reducing mortality from colorectal cancer by screening for fecal occult blood,” N Engl J Med, 328, pp. 1365-1371, 1993.
    [11]J. D. Hardcastle, J. O. Chamberlain, M. H. E Robinson, et al, “Randomised controlled trial of faecal-occult-blood screening for colorectal cancer,” Lancet, 348, pp. 1472-1477, 1996.
    [12]O. Kronborg, C. Fenger, J. Olsen et al, “Randomised study of screening for colorectal cancer with faecal-occult-blood test,” Lancet, 348, pp. 1467-1471, 1996.
    [13]R. W. McNaught and J. T. France, “Studies of the biochemical basis of steroid sulphatase deficiency: Preliminary evidence suggesting a defect in membrane-enzyme structure,” Journal of Steroid Biochemistry, 13, pp. 363-373, 1980.
    [14]J. C. Martínez, N. A. Chequer, J. L. González, T. Cordova, “Alternative Metodology for Gold Nanoparticles Diameter Characterization Using PCA Technique and UV-VIS Spectrophotometry,” Nanoscience and Nanotechnology, 2, pp. 184-189, 2012.
    [15]Richard S. Quimby, “Photonics and Lasers,” Wiley, pp. 249-279, 2006.
    [16]Filip Tavernier, Michiel Steyaert, “High-Speed Optical Receivers with Integrated Photodiode in Nanoscale CMOS,” Springer, pp. 77, 2011.
    [17]Held. G, “Introduction to Light Emitting Diode Technology and Applications,” CRC Press, pp. 116, 2008.
    [18]李輝煌,田口方法:品質設計的原理與實務(第四版),高立圖書有限公司,2017。
    [19]J. L. Rosa, A. Robin, M. B. Silva, C. A. Baldan and M. P. Peres, “Electrodeposition of copper on titanium wires: Taguchi experimental design approach,” Journal of Materials Processing Technology, 209, pp. 1181-1188, 2009.
    [20]R. S. Rao, R. S. Parkasham, K. K. Prasad, S. Rajesham, P. N. Sama and L. V. Rao, “Xylitol production by Candida sp.: parameter optimization using Taguchi approach,” Process Biochemistry, 39, pp. 951-956, 2004.
    [21]R. W. McNaught and J. T. France, “Studies of the biochemical basis of steroid sulphatase deficiency: Preliminary evidence suggesting a defect in membrane-enzyme structure,” Journal of Steroid Biochemistry, 13, pp. 363-373, 1980.
    [22]G. Harrison, P. Haffey and E. E. Golub, “A nanogram-level colloidal gold single reagent quantitative protein assay,” Analytical Biochemistry, 380, pp. 1-4, 2008.
    [23]Knox Van Dyke, “Luminescence Immunoassay and Molecular Applications,” CRC Press, pp. 28-41, 1990.
    [24]王瑞祿,微流體生醫光電異質整合感測晶片應用於螢光免疫分析-子計畫三:生醫光電系統模組之矽光感測元件與信號讀取電路設計,行政院國家科學委員會計畫,計畫編號 NSC99-2221-E017-004-MY3,民國100年。
    [25]R. A. Yotter, M. R. Warren, D. M. Wilson, “Optimized CMOS photodetector structures for the detection of green luminescent probes in biological applications,” Sensors and Actuators B Chemical, 103, pp.43-49, 2004.
    [26]H. W. Chu, R. L. Wang, M. J. Syu, Z. K. Lin, C. F. Lin, H. H. Tsai, Y. Z. Juang, “A Fluorescence-Sensing Circuit Using an On-chip Silicon Photodiode with Reduced Dark Current for Fluorescence Immunoassay,” The 4th International Symposium on Microchemistry and Microsystems (ISMM 2012), 2012.
    [27]OSI Optoelectronics High Speed Silicon Photodiode Datasheet, OSI Systems Company, 2015.
    [28]C. E. Shannon, “Communication in the Presence of Noise,” Proc. Institute of Radio Engineers, 37, pp.10-21, 1949.
    [29]CLS15-22C-L213G-TR8 Datasheet, Everlight Electronics, 2013.
    [30]LT1014 Quad Precision Op Amp Datasheet, Texas Instruments, 2009.
    [31]15-21/GHC-YR1S1/2T LED Datasheet, Everlight Electronics, 2005.
    [32]LD1117 Linear Voltage Regulator Datasheet, Adafruit Industries, 2013.
    [33]NE555 Single Precision Timer Datasheet, Texas Instruments, 2014.
    [34]MSP430G2553 Mixed Signal Microcontroller Datasheet, Texas Instruments, 2011.

    無法下載圖示 校內:2024-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE