簡易檢索 / 詳目顯示

研究生: 林家民
Lin, Chia-Ming
論文名稱: 以田口方法進行RCP疊合封裝體疲勞壽命之最佳化設計
The Study on Optimal Design of Fatigue Life for RCP with PoP Package by Using Taguchi Method
指導教授: 陳榮盛
Chen, Rong-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 97
中文關鍵詞: 再分配晶片封裝技術堆疊式封裝全域/局部分析法田口品質設計法
外文關鍵詞: Redistributed Chip Package, Package on Package, Global/Local method, Taguchi Method
相關次數: 點閱:94下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,3C產業朝向尺寸縮小、降低成本、儲存空間增大及功能性整合等方向發展。RCP的技術可使傳統封裝體顯著縮小,加上3D疊合封裝可使產品達到上述的要求,同時將邏輯電路和記憶體結合以達到縮小系統尺寸的目的。
    本研究之RCP疊合封裝體由上方超薄型細間距球柵陣列封裝體(VFBGA)經RCP多佈線層技術與下方球閘陣列封裝體(SPBGA)疊合而成。本文採用ANSYS有限元素軟體配合Global/Local 方法,在JEDEC規範下施予RCP疊合封裝體-40゚C到125゚C的溫度負載,並根據Coffin- Mansong與Morrow之能量觀點,計算出關鍵錫球之疲勞壽命,其中錫球以亞蘭德黏塑性模型描述之,其他材料視為彈性。
    隨後,進行單一因子實驗分析RCP疊合封裝體之各元件材料之楊氏模數、熱膨脹係數與幾何尺寸對於可靠度之影響,藉以篩選影響顯著的因子,再將此類因子利用田口品質設計法求得最佳參數設計。最後,藉由田口方法所得最佳參數設計,使RCP疊合封裝體壽命比原始水準提升86.5%。

    In recent years, the electronics industry tends to offer products with smaller size, lower cost, larger storage space and integration of function.The RCP (Redistributed Chip Package) technology is facilitated to reduce the size of the traditional package, and the application of 3D integrating technology ensures the products with the requirements mentioned above. Meanwhile, the logic unit is combined with the memory unit to achieve the goal of size reduction of the system.

    The RCP with PoP (Package on Package) package is constructed by stacking the upper very fine pitch ball grid array (VFBGA) with RCP’s multiple redistribution layers technology on the lower stack package ball grid array (SPBGA). The finite element software ANSYS with the Global/Local approach is adopted for this study .Based on the JEDEC, the package is subjected to a thermal cycle of -40℃~125℃.Then the Coffin-Manson model and the Morrow’s energy-based model are applied to predict the fatigue life of solder ball (95.5Sn3.8Ag0.7Cu), which is described by the viscoplastic Anand model and other materials are assumed to be elastic.

    Afterwards, the one factor at a time analysis is conducted to investigate the impact on reliability of RCP with PoP package, in which the factors of CTE and Young’s Modulus of materials and geometric size of components are considered. Then the most significant factors are filtered out and applied to obtain the optimal design of parameters by the Taguchi method. As a result, such an optimal design to increase the fatigue life of the package by 86.5% compared to that of the original design

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 X 圖目錄 XII 符號表 XV 第一章 緒論 1 1-1 前言 1 1-2 研究主體與目的 2 1-3 文獻探討 3 1-4 研究方法 5 1-5 章節提要 5 第二章 理論基礎 8 2-1 RCP封裝製程技術 8 2-2 黏塑性理論基礎 9 2-2-1亞蘭德黏塑性本構模型 9 2-2-2亞蘭德模型之材料參數 11 2-2-3 ANSYS輸入之格式 14 2-3 全域/局部模型分析法 14 2-4 錫球疲勞壽命 15 2-4-1 低循環疲勞壽命 16 2-5 田口品質設計法 17 2-5-1 品質特性 18 2-5-2 直交表 18 2-5-3 自由度 19 2-5-4 品質損失函數 19 2-5-5 信號雜訊比 20 2-5-6 因子反應表與輔助反應表 20 2-5-7 變異分析 21 2-5-8 信賴區間 24 第三章 分析模型建立與評估 30 3-1 RCP疊合封裝體分析模型之選定與建立 30 3-1-1 模型幾何描述與建立 30 3-1-2 RCP疊合封裝體模型之基本假設 31 3-2 RCP疊合封裝體模型之分析條件 32 3-2-1 邊界條件 32 3-2-2 溫度循環負載 33 3-3全域模型網格收斂分析 33 3-3-1全域粗糙模型網格收斂分析 34 3-4 局部模型收斂分析 34 3-4-1 局部模型範圍收斂分析 35 3-4-2 局部模型網格收斂分析 35 3-5 溫度循環收斂分析 36 第四章 單一因子實驗之分析 58 4-1 單一因子設計法 58 4-1-1 因子水準之選擇 59 4-2 單一因子設計之分析結果 60 4-2-1 封膠材料性質之影響 60 4-2-2 晶片材料性質之影響 61 4-2-3 銅材料性質之影響 62 4-2-4 核心基板材料性質之影響 62 4-2-5 上晶片與封膠厚度之幾何尺寸影響 63 4-2-6 下晶片與核心基板厚度之幾何尺寸影響 64 4-3 單一因子設計之結果探討 64 4-4 結果與討論 65 第五章 田口品質工程分析 76 5-1 田口品質設計法 76 5-1-1 品質特性之選定 76 5-1-2 控制因子與水準值 77 5-1-3 直交表之選定 78 5-2 實驗結果 78 5-3 變異分析 79 5-4 最佳化預測與確認實驗值 80 5-4-1 S/N比預測值 80 5-4-2 信賴區間 81 5-5 結果討論 83 第六章 結論與未來研究方向 90 6-1 結論 90 6-2 未來研究方向 93 參考文獻 95

    [1]B. Keser, C. Amrine, D. Trung, O. Fay, S. Hayes, G. Leal, W. Lytle, D. Mitchell, R.Wenzel, "The Redistributed Chip Package: A Breakthrough for Advanced Packaging", IEEE Electron. Compon. and Technol. Conf., pp. 286–291, 2007
    [2]L. N. Ramanathan, B. Keser, C. Amrine, T. Duong , S. Hayes, G. Leal, , M. Mangrum,D. Mitchell, and, R.t Wenzel, "Implementation of a Mobile Phone Module with Redistributed Chip Packaging", IEEE Electron. Compon. and Technol. Conf., pp. 1117–1120, 2008
    [3]S. Trotta, M. Wintermantel, J. Dixon, U. Moeller, R. Jammers, T. Hauck,A. Samulak, B. Dehlink, S.M. Kuo, L. Hao, A. Ghazinour, Y. Yi, S. Pacheco, R. Reuter, S. Majied, D.Moline, T. Aaron,V. P. Trivedi, D. J. Morgan, and J. John, "An RCP Packaged Transceiver Chipset for Automotive LRR and SRR Systems in SiGe BiCMOS Technology", IEEE Transactions On Microwave Theory And Techniques, VOL. 60, NO. 3, pp.778-793, 2012
    [4]R. Darveaux, "Solder Joint Fatigue Life Model", Proceedings of TMS Annual Meeting, pp.231-218, 1997
    [5]R. Darveaux, "Effect of Simulation Methodology on Solder Joint Crack Growth Correlation", Journal of Electronic Packaging, Vol. 124, pp.147-154, 2000
    [6]Z.N. Cheng, G.Z. Wang, L. Chen, J. Wilde, K. Becker, "Viscoplastic Anand Model for Solder Alloys and Its Application", Soldering & Surface Mount Technology, pp. 31-36, 2000
    [7]Che, F.X., and Pang, H.L.J., "Thermal Fatigue Reliability Analysis for PBGA with Sn-3.8Ag-0.7Cu Solder Joints", Proceedings of 6th Electronics Packaging Technology Conference, pp.787-792. 2004
    [8]C. Kung, R.S. Chen, H.C. Lin, T.k. Win, "Optimization of UBM for WLCSP Fatigue Reliability", Proceedings of International Microelectronic and Package Conference, pp.221-231, 2005
    [9]Y.S. Lai, T.H. Wang, C.C. Wang, C.L. Y, "Optimal Design in Enhancing Board-level Thermomechanical and Drop Reliability of Package-on-Package Stacking Assembly", Electronics Packaging Technology Conference, pp.335-341, 2005
    [10]曾穗卿, "利用有限元素與田口方法探討FCCSP構裝無鉛錫球之最佳化疲勞壽命", 國立成功大學工程科學系博士畢業論文, 2006
    [11]B. Keser, C. Amrine, D. Trung, O. Fay, S. Hayes, G. Leal, W. Lytle, D. Mitchell, R.Wenzel, "The redistributed chip package: A breakthrough for advanced packaging", IEEE Electron. Compon. and Technol. Conf., 2007, pp. 286–291.
    [12]張家豪, "以田口式品質工程分析QFN構裝體疲勞壽命之最佳化探討", 成功大學工程科學系碩士畢業論文, 2007
    [13]L. Anand, "Constitutive Equations for Hot-Working of Metals," International Journal of Plasticity, Vol. 1, pp. 213-231, 1985
    [14]D. Bhate, D. Chan, G. Subbarayan, Member, IEEE, T. C. Chiu, V. Gupta, and D. R. Edwards, "Constitutive Behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu Alloys at Creep and Low Strain Rate Regimes", IEEE Transactions on Components and Packaging Technologies, Vol. 31, No. 3, pp. 622-633, 2008
    [15]L. F. Coffin, Jr., ASME Trans. 76, 931 , 1954
    [16]S. S. Manson, Exp. Mech. 5, 193 , 1965
    [17]J. D. Morrow, ASTM STP 378, p. 45, ASTM, Philadelphia , 1964
    [18]Pang, H.L.J., Xiong, B.S. and Low, T.H., "Creep and Fatigue Characterization of Lead Free 95.5Sn-3.8Ag-0.7Cu Solder", 54th Electron. Compon. and Technol. Conf, June 1-4, Las Vegas, pp.1333-1337, 2004
    [19]李輝煌, "田口方法品質設計的原理與實務, " 高立圖書有限公司2011
    [20]陳昌榮, "利用反應曲面法配合基因演算法進行直接晶片接合封裝體疲勞壽命之最佳化設計",成功大學工程科學系碩士畢業論文, 2010
    [21]D. Bhate, D. Chan, G. Subbarayan, "Constitutive Behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu Alloys at Creep and Low Strain Rate Regimes", IEEE Transactions on Components and Packaging Technologiesm, Vol. 31, No. 3, 2008
    [22]N. Chhabra, "Freescales Redistributed Chip Packaging (RCP) Ready for Production", Freescale Semiconductor, 2010

    下載圖示 校內:2014-07-20公開
    校外:2017-07-20公開
    QR CODE