| 研究生: |
蔡凱鵬 Tsai, Kai-Peng |
|---|---|
| 論文名稱: |
以科技接受模型探討智慧手機消費者對以科技接受模型探討智慧手機消費者對行動加值應行動加值應用服務的購買行為之研究 Technology acceptance model of smartphone consumers to explore the smart phone consumer buying behavior of mobile value-added should be mobile value-added Application services |
| 指導教授: |
黃國平
Hwang, Kuo-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 經營管理碩士學位學程(AMBA) Advanced Master of Business Administration (AMBA) |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 行動加值應用服務 、科技接受度模式 、科技準備度 、電腦自我效能 、智慧型手機 |
| 外文關鍵詞: | mobile value-added application services, technology acceptance model, smart phones, technology readiness, computer self-efficacy |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出從使用者觀點探討智慧型手機行動加值應用服務之使用意願及行為意向,即以科技接受使用模型為理論基礎,結合「科技準備度」、「電腦自我效能」等相關理論,建構出研究的基礎架構,透過實証的角度來影響消費者使用智慧型手機行動加值應用服務影響。本研究問卷發放樣本共有540份,其中有20份填答不完整故予以捨棄,有效樣本共有520 份。有關本研究之研究成果摘錄如下:
1.電腦自我效能對使用者的認知有用具正向顯著影響。
2.電腦自我效能對使用者的認知易用具正向顯著影響。
3.科技準備度之樂觀性對使用者的認知有用具正向顯著影響。
4.科技準備度之創新性對使用者的認知有用具正向顯著影響。
5.科技準備度之不適應性對使用者的認知有用具負向顯著影響。
6.科技準備度之不安全性對使用者的認知有用具負向顯著影響。
7.科技準備度之樂觀性不會對使用者的認知易用產生顯著影響。
8.科技準備度創新性不會對使用者的認知易用產生顯著影響。
9.科技準備度之不適應性對使用者的認知有用具負向顯著影響。
10.科技準備度之不安全性對使用者的認知有用具負向顯著影響。
11.使用者的認知易用不會對其認知有用產生顯著影響。
12.使用者的認知有用會對其使用態度產生正向顯著影響。
13.使用者的認知易用不會對其使用態度產生顯著影響。
14.使用者的使用態度不會對其行為意圖產生顯著影響。
15.使用者的認知有用會對其行為意圖產生正向影響。
16.使用者的認知易用會對其行為意圖產生正向影響。
This study proposes to explore the use of smart phone mobile value-added application services will and behavioral intention from the user point of view, that technology acceptance to use the model as the theoretical basis, combined with the "technology readiness", "Computer self-efficacy and other related theoretical construct out of research infrastructure, through the empirical angle to influence consumers to use smart phone mobile value-added application service impact. In this study, questionnaires a total of 540 samples, of which 20 were Tianda incomplete therefore be discarded, a total of 520 copies of the valid samples. Excerpt about the results of this study are as follows: 1.Computer self-efficacy on the user's cognitive appliances positive significant effect.;2.Computer self-efficacy on the user's perceived ease appliances positive significant effect.;3.Technology readiness of optimism on the user's cognitive appliances positive significant impact.;4.Technology readiness innovative appliances positive significant impact on the user's cognitive;5.Technology readiness adaptability to the user's cognitive appliances negative significant.;6. The technology readiness of the insecurity of the user's cognitive appliances negative significant impact.;7.The technology readiness of the music observability does not awareness of the user's ease of use have a significant impact.;8.Technology readiness and innovative does not have a significant impact on the user's awareness and use.;9.Technology readiness adaptability to the user's cognitive appliances negative significant impact.;10 the technology readiness of the insecurity of the user's cognitive appliances negative significant impact.;11.User's perceived ease no cognitive useful to have a significant impact.;12.User's perceived usefulness will be a positive significant impact on attitude.;13 user perceived ease of use will not be a significant impact on their attitudes.;14 the use of the user's attitude is not their actions intended to have a significant impact.;15. Useful to the user's awareness of their behavioral intentions have a positive impact.;16 the user's perceived ease with the intention of its behavior has a positive impact.
中文文獻
1. 林威宏,探討台灣智慧型手機產業的最適決策模式-以宏達電公司為例,中原大學國際貿易研究所碩士論文,2006。
2. 翁少白,即時數位整合交通系統接受度調查研究,國立中山大學傳播管理研究所碩士在職專班碩士論文,2006。
3. 彭成君,教材呈現類型對線上學習使用態度之研究,中原大學資訊管理研究所碩士論文,2003。
4. 黃義雄,護理人員使用自由軟體接受程度之研究,經國管理暨健康學院健康產業管理研究所碩士論文,2009。
5. 葉紋君,科技準備度與科技接受模式之整合與延伸—以智慧型手機為例,國立彰化師範大學企業管理學系碩士論文,2010。
6. 賈智仁,結合創新理論與計劃行為理論以探討行動多媒體物件之採用,國立暨南國際大學資訊管理研究所碩士論文,2004。
7. 蘇伯方,即時傳訊軟體採用模式之研究,國立中山大學傳播管理研究所碩士論文,2004。
英文文獻
1. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckman (Eds.), Action-control: From cognition to behavior, 11-39. Heidelberg: Springer.
2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
3. Ajzen, I., M. Fishbein (1980). Understanding Attitudes and Predicting Social Behavior, Englewood. Cliffs, NJ: Prentice-Hall, Inc.
4. Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory, Prentice Hall, Englewood Cliffs, NJ.
5. Bateson, J. (1985). “Self-Service Consumer: An Exploratory Study”, Journal of Retailing, 61(Fall), 49-76.
6. Bellocci,V., S. Genovese, D Inuaggiato, and M. Tucci (2002). Mobile Location-Aware Services: 2002 Market Perspective,’ Ericsson, Dwision Service Archecture and Interactive Solutions.
7. Bentler, P.M. (1990). “Comparative fit indexes in structural models”, Psy- chological Bulletin, 107(2), 238-246.
8. Chaudhuri, A. & M. B Holbrook,.(2001). The Chain of Effects from Brand Trust and Brand Affect to Brand Performance: The Role of Brand Loyalty, Journal of Marketing, 65(2), 81-93.
9. Compeau, D. R., and C. A. Higgins (1995) “Application of social cognitive theory to training for computer skills, ” Information Systems Research, 6(2), 118-43.
10. Compeau, D. R., C. A.Higgins, and S.Huff (1999). “Social cognitive theory and individuil reactions to computing technology: A longitudinal study, ” MIS Quarterly, 23(2), 145-158.
11. Dabholkar, P. A. (1994). Technology-Based Service Delivery: A Classification Scheme for Developing Marketing Strategies. Advances in Services Marketing and Management, 3, 241-271.
12. Dabholkar, P. A. (1996). Consumer Evaluations of New Technology-Based Self-Service Options: An Investigation of Alternative Models of Service Quality. International Journal of Research in Marketing, 13, 29-51.
13. Davis, F. D. (1989). “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Quarterly, 13 (3), 319-339.
14. Davis, F.D., P. R. Bagozzi, and P. R.Warshaw (1989). “User acceptance of computer technology : A comparison of two theoretical models,” Management Science, 35 (4), 982-1003.
15. Davis, S. J., J. Inman, and L. McAlister. (1992) “Promotion Has a Negative Effect on Brand Evaluation or Does It ? Additional Disconfirming Evidence,” Journal of Marketing Research, 29(1), 143-48.
16. Fishbein, M., and I. Ajzen (1975) “Belief, attitude, intention and behavior: An introduction to theory and research,” Reading (MA): Addison-Wesley.
17. Hair, J.F. Jr, R.E. Anderson, R.L. Tatham, and W.C. Black (1998). “Multivariate Data Analysis, 5th ed. “, NJ: Englewood Cliffs. Prentice-Hall.
18. Lan, Y. F., Y. S. Sie (2010). " Using RSS to support mobile learning based on media richness theory." Computers & Education, 55(1), 723-732.
19. Lim, K. H., and I. Benbasat (2000). The effect of multimedia on perceived equivocality and perceived usefulness of information systems. MIS Quarterly, 42(3), 449-471.
20. Mathieson, K. (1991). “Extending the TAM: The influence of perceived user resources,” The DATA BASE for Advances in Information Systems, 32 (3), 86-112.
21. Meuter, M. L., A. L. Ostrom, R. Roundtree, and M. J. Bitner (2000). Self-service technologies: understanding customer satisfaction with technology-based service encounters. Journal of Marketing, 64(3), 50-64.
22. Meuter, M. L., A. L.Ostrom, M. J. Bitner, and R. Roundtree (2003). The influence of technology anxiety on consumer use and experiences with self-service technology. Journal of Business Marketing, 69, 61-83.
23. Mick, D.G., S.Fournier. (1998). Paradoxes of Technology: Consumer Cognizance, Emotions, and Coping Strategies. Journal of Consumer Research, 25(September), 123-143.
24. Moore, G. C., and I. Banbasat (1991). “Development of an instrument to measure the perception of adopting an information technology innovation,” Information Systems Research, 2 (3), 192-222.
25. Parasuraman (2000). The Impact of Technology on the Quality Value Loyalty Chain: A Research Agenda, Journal of the Academy of Marketing Science, 28(1), 68-174.
26. Sharma, S (1996). “Applied Multivariat Techeniques“, New York: J. Wiley.
27. Straub, D., M Limayem, and E, E Karahanna (1995). Measuring system usage: Implications for IS theory testing. Management Science, 41(8), 1328-1342.
28. Taylor, S., and P. A Todd (1995). “ Assessing IT usage: The role of prior experience, ” MIS Quarterly, 19 (4), 561-570.
29. Thompson, R. L., C. A., Higgins, and J. M. Howell (1994). “ Influence of experience on personal computer utilization: Testing a conceptual model,” Journal of Management Information Systems, 11 (1), 167-187.
30. Thompson, R. L., C.A Higgins, and J. M.Howell (1991). “Personal computing: Toward a conceptual model of utilization,” MIS Quarterly, 15 (1), 124-43.
31. Tilson D., K. Lyytinen and R.Baxter (2004). "A Framework for Selecting a Location Based Service (LBS) Strategy and Service Portfolio," 04 Proceedings of the Proceedings of the 37th Annual Hawaii.
32. Venkatesh, V. and Morris, M. G. (2000). “Why don’t men ever stop to ask for direction? Gender, social influence, and their role in technology acceptance, and usage behavior,” MIS Quarterly, 24(1), 115-139.
33. Venkatesh, V., M. G. Morris, G. B.Davis,, and F.D. Davis (2003). “User acceptance of information technology: Toward a unified view,” MIS Quarterly, 27(3), 425-478.
34. Yi, Y., L.T. Lai,, Z. Wu (2003). Incorporating technology readiness(TR) into TAM: are individual traits important to understand technology acceptance?. Diffusion Interest Group in Information Technology (DIGIT) Workshop, Seattle, December 14.
校內:2017-08-29公開