| 研究生: |
郭建賢 Kuo, Chien-Hsien |
|---|---|
| 論文名稱: |
立式主動磁浮軸承系統之強健控制與分析 Robust Control and Analysis of Vertical Active Magnetic Bearing Systems |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 主動磁浮軸承 、強健控制 |
| 外文關鍵詞: | Robust Control, Active Magnetic Bearing |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在設計立式四軸主動磁浮軸承(Active Magnetic Bearing, AMB)系統的H-inf強健控制器。 藉著H-inf強健控制器使閉迴路系統具有強健穩定性及良好的響應性能,且能有效抑制參數不確定性(Parametric Uncertainty)及轉軸的陀螺儀效應(Gyroscopic Effect)對輸出的影響。 此外,引用Kharitonov定理對H-inf閉迴路系統作強健穩定性分析,利用參數變異區間(Interval)的極值(Extremal Value)找出克利托諾夫多項式(Kharitonov Polynomials)及克利托諾夫多項式(Kharitonov Segments),並挑選有限個此類呈參數極值的閉迴路特徵多項式,並藉之判定它們的穩定性。 亦可藉此求得可容忍的主軸轉速範圍,且可預知閉迴路能承受多少陀螺儀效應。 最後,引用改良型的奈氏穩定準則 (Nyquist Stability Criterion)分析二輸入二輸出系統的閉迴路穩定性,並經由模擬以確認其性能。
This thesis principally designs H-inf robust controller of vertical active magnetic bearing (AMB) system, which has four degree of freedom. The closed-loop system has robust stability and fine response performance by H-inf robust controller, and it is able to reduce the influence of the output on parametric uncertainty and on gyroscopic effect of rotor. Furthermore, Kharitonov theory is applied to analysis robust stability in H-inf closed-loop system. It utilizes extremal value of parametric variation interval to find Kharitonov Polynomials and Kharitonov Segments out, and determines the stability of them, which are chosen finite number closed-loop characteristic polynomials with Parametric Extremal Value. By this way, it gets the endurable range of rotational speed of spindle, and forecasts that the closed-loop system can bear how much gyroscopic effect. Finally, modified Nyquist Stability Criterion is applied to analysis the closed-loop stability of two outputs and two inputs system. And it confirmed it’s performance by simulation.
[1] G. Zames, “Feedback and optimal sensitivity : model reference transformation, multiplicative seminorms, and approximate inverses,” IEEE Transactions on Automatic Control, Vol. AC-26, N. 2, pp. 301-320, 1981.
[2] J. C. Doyle, G. Stein, “Multivariable feedback design: concepts for a classical / modern synthesis,” IEEE Transactions on Automatic Control, Vol. AC-26, No. 1, pp. 4-16, 1981.
[3] J. C. Doyle, “Analysis of feedback system with structured uncertainties.” IEE Proceedings, Part D: Control Theory and Applications, Vol. 129, No. 6, pp. 242-250, 1982.
[4] J. C. Doyle, C. Chu, “Matrix interpolation and H infinity performance bounds,” Proceedings of the American Control Conference, pp. 129-134, 1985.
[5] K. Nonami, H. Ueyama, Y. Segawa, “H infinity control of milling AMB spindle,” JSME International Journal, Series C, Vol. 39, No. 3, pp. 502-508, 1996.
[6] S. Sivrioglu, K. Nonami, M. Saigo, “Low power consumption nonlinear control with H infinity compensator for a zero-bias flywheel AMB system,” JVC/Journal of Vibration and Control, Vol. 10, No. 8, pp.1151-1166, 2004.
[7] M. Ichihara, T. Sagane, M. Saigou, H. Shida, H. Tajima, K. Seto, “A new modeling technique and control system design of a flexible rotor supported by active magnetic bearings for motion and vibration control,” Proceedings of the ASME Design Engineering Technical Conference, Vol. 5, No. B, pp. 923-930, 2003.
[8] M. Habib, H. Inayat, I. Jawaid, “Fuzzy logic based control of rotor motion in active magnetic bearings,” 2004 IEEE Conference on Cybernetics and Intelligent Systems, pp.1218-1224, 2004.
[9] S. L. Chen, S. H. Chen, S. T. Yan, “Stabilization of a current-controlled three-pole magnetic rotor-bearing system by integral sliding mode control,” 2004 IEEE International Conference on Networking, Sensing and Control, pp. 949-954, 2004.
[10] O. Lang, J. Wassermann, H. Springer, “Adaptive vibration control of a rigid rotor supported by active magnetic bearings,” American Society of Mechanical Engineers, Vol. 95-GT-181, pp.6 1995.
[11] M. Fujita, T. Namerikawa, F. Matsumura, K. Uchida, “μ-synthesis of an electromagnetic suspension system.” IEEE Transactions on Automatic Control, Vol. 40, No. 3, pp. 530-536, 1995.
[12] F. Castano, D. Jimenez, F. R. Rubio, “A Combined H infinity /QFT Control of a Rotary Dryer,” Proceedings of the IEEE Conference on Decision and Control, Vol. 6, pp. 5909-5914, 2003.
[13] C, Guangzhong, F. Suxiang, X. Gang, “The characteristics analysis of magnetic bearing based on H-infinity controller,” Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Vol. 1, pp. 752-756, 2004.
[14] S. K. Nam, H. S. Kang, O. S. Song, “Fuzzy Hinf output feedback control for rotor magnetic bearing system,” IEEE International Conference on Plasma Science, Vol. 1, pp. 455-459, 2002.
[15] H. Chapellat, L. H. Keel, S. P. Bhattacharyya, “Stability margins for multilinear interval control systems,” Proceedings of the IEEE Conference on Decision and Control, pp. 894-899, 1992.
[16] H. Chapellat, M. Dahlch, S. P. Bhattacharyya, “Robust stability manifolds for multilinear interval systems,” IEEE Transactions on Automatic Control, Vol. 38, No. 2, pp. 314-318, 1993.
[17] H. Chapellat, L. H. Keel, S. P. Bhattacharyya, “Extremal robustness properties of multilinear interval systems,” Automatica, Vol. 30, No. 6, pp. 1037-1042, 1994.
[18] R. Hernandez, S. Dormido, “Kharitonov's theorem extension to interval polynomials which can drop in degree: a Nyquist approach,” IEEE Transactions on Automatic Control, Vol. 41, No. 7, pp. 1009-1012, 1996.
[19] M. Pachter, T. Kobylarz, C. H. Houpis, “Literal Nyquist stability criterion for MIMO control systems,” International Journal of Control, Vol. 63, No. 1, pp. 55-65 1996.
[20] S. Sivrioglu, K. Nonami, “Sliding mode control with time-varying hyperplane for AMB systems,” IEEE/ASME Transactions on Mechatronics, Vol. 3, No. 1, pp. 51-59, 1998.
[21] 黃忠良, “磁懸浮與磁力軸承:磁力懸浮系統工程及磁力軸承技術,” 復漢出版社, 2001.
[22] 楊憲東, 葉芳栢, “線性與非線性 控制理論:Game Theoretic Approach,” 全華科技圖書股份有限公司, 1997
[23] S. P. Bhattacharyya, H. Chapellat, L. H. Keel, “Robust Control: The Parametric Approach,” Prentice Hall PTR, Chap. 5, 1995.
[24] H. Chapellat, S P. Bhattacharyya, “A generalization of Kharitonov’s theorem: robust stability of interval plants,” IEEE Transactions on Automatic Control, Vol. AC-34, pp. 306-311, 1989.
[25] S. P. Bhattacharyya, H. Chapellat, L. H. Keel, “Robust Control: The Parametric Approach,” Prentice Hall PTR, Chap. 2, 1995.
[26] A. C. Bartlett, C. V. Hollot, H. Lin, “Root location of an entire polytope of polynomials: it suffices to check the edges,” Mathematics of Controls, Signals and Systems, Vol. 1, pp. 61-71, 1988.
[27] H. Chapellat, L. H. Keel, S. P. Bhattacharyya, “Stability Margins for Multilinear Interval Control System,” Proceedings of the IEEE Conference on Decision and Control, pp. 894-899, 1992.
[28] H. Chapellat, M. Dahleh, S. P. Bhattacharyya, “Extrmal manifolds in robust stability,” Tech, Rep., TCSP Report, Texas A&M University, July, 1990.
[29] A. G. L. Macfarlane, I. Postlethwaite, “The generalized Nyquist stability criterion and multivariable root loci,” International Journal of Control, Vol. 25, pp. 81-127, 1977.
[30] M. Pachter, T. Kobylarz, C. H. Houpis, “Literal Nyquist stability criterion for MIMO control system,” International Journal of Control, Vol. 63, No. 1, pp. 55-65, 1996.