簡易檢索 / 詳目顯示

研究生: 郭建賢
Kuo, Chien-Hsien
論文名稱: 立式主動磁浮軸承系統之強健控制與分析
Robust Control and Analysis of Vertical Active Magnetic Bearing Systems
指導教授: 蔡南全
Tsai, Nan-Chyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 124
中文關鍵詞: 主動磁浮軸承強健控制
外文關鍵詞: Robust Control, Active Magnetic Bearing
相關次數: 點閱:83下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要在設計立式四軸主動磁浮軸承(Active Magnetic Bearing, AMB)系統的H-inf強健控制器。 藉著H-inf強健控制器使閉迴路系統具有強健穩定性及良好的響應性能,且能有效抑制參數不確定性(Parametric Uncertainty)及轉軸的陀螺儀效應(Gyroscopic Effect)對輸出的影響。 此外,引用Kharitonov定理對H-inf閉迴路系統作強健穩定性分析,利用參數變異區間(Interval)的極值(Extremal Value)找出克利托諾夫多項式(Kharitonov Polynomials)及克利托諾夫多項式(Kharitonov Segments),並挑選有限個此類呈參數極值的閉迴路特徵多項式,並藉之判定它們的穩定性。 亦可藉此求得可容忍的主軸轉速範圍,且可預知閉迴路能承受多少陀螺儀效應。 最後,引用改良型的奈氏穩定準則 (Nyquist Stability Criterion)分析二輸入二輸出系統的閉迴路穩定性,並經由模擬以確認其性能。

     This thesis principally designs H-inf robust controller of vertical active magnetic bearing (AMB) system, which has four degree of freedom. The closed-loop system has robust stability and fine response performance by H-inf robust controller, and it is able to reduce the influence of the output on parametric uncertainty and on gyroscopic effect of rotor. Furthermore, Kharitonov theory is applied to analysis robust stability in H-inf closed-loop system. It utilizes extremal value of parametric variation interval to find Kharitonov Polynomials and Kharitonov Segments out, and determines the stability of them, which are chosen finite number closed-loop characteristic polynomials with Parametric Extremal Value. By this way, it gets the endurable range of rotational speed of spindle, and forecasts that the closed-loop system can bear how much gyroscopic effect. Finally, modified Nyquist Stability Criterion is applied to analysis the closed-loop stability of two outputs and two inputs system. And it confirmed it’s performance by simulation.

    中文摘要 ............................................................. I 英文摘要 ............................................................. II 致謝 ............................................................. III 目錄 ............................................................. IV 圖目錄 ............................................................. VII 表目錄 ............................................................. X 第一章 緒論 ......................................................... 1 1.1 文獻回顧 ............................................... 2 1.2 本文貢獻 ............................................... 4 第二章 立式磁浮軸承系統之建模 ....................................... 6 2.1 單自由度磁浮系統 ....................................... 8 2.2 四軸主動式磁浮軸承系統建模 ............................. 13 2.3 四軸磁浮軸承模型之分析與探討 ........................... 19 第三章 強健控制器之設計 ............................................. 23 3.1 強健控制器設計 ........................................ 23 3.2 閉迴路系統之模擬分析 .................................. 29 第四章 強健穩定性---參數法 .......................................... 33 4.1 前言 ................................................... 33 4.2 Kharitonov定理 ......................................... 35 4.2.1 極值特徵多項式 .............................. 35 4.2.2 Kharitonov定理介紹 .......................... 40 4.2.3 多線性箱盒定理(Multilinear Box Theory) ...... 47 4.3 二輸入二輸出系統之奈氏準則與強健穩定 ................... 53 4.3.1 奈氏穩定準則與延伸 .......................... 53 4.3.2 例證 ........................................ 55 4.3.3 二輸入二輸出系統的奈式穩定準則 .............. 59 第五章 性能評估與穩定性分析 ......................................... 63 5.1 性能評估 ............................................... 63 5.2 穩定性分析 ............................................. 70 5.3 二輸入二輸出系統的奈氏準則之應用 ....................... 80 第六章 討論與展望 ................................................... 85 6.1 討論 ................................................... 85 6.2 未來展望 ............................................... 87 參考文獻 ............................................................. 88 附錄 ................................................................. 91 附錄A. 控制理論簡介 ....................................... 91 A.1 強健控制介紹 .................................. 91 A.2 的數學基礎 ................................... 103 A.3 控制器設計理論 ............................... 108 附錄B. 控制器 ............................................. 115 附錄C. 模擬參數與數據 ...................................... 117 自述 ................................................................. 124

    [1] G. Zames, “Feedback and optimal sensitivity : model reference transformation, multiplicative seminorms, and approximate inverses,” IEEE Transactions on Automatic Control, Vol. AC-26, N. 2, pp. 301-320, 1981.
    [2] J. C. Doyle, G. Stein, “Multivariable feedback design: concepts for a classical / modern synthesis,” IEEE Transactions on Automatic Control, Vol. AC-26, No. 1, pp. 4-16, 1981.
    [3] J. C. Doyle, “Analysis of feedback system with structured uncertainties.” IEE Proceedings, Part D: Control Theory and Applications, Vol. 129, No. 6, pp. 242-250, 1982.
    [4] J. C. Doyle, C. Chu, “Matrix interpolation and H infinity performance bounds,” Proceedings of the American Control Conference, pp. 129-134, 1985.
    [5] K. Nonami, H. Ueyama, Y. Segawa, “H infinity control of milling AMB spindle,” JSME International Journal, Series C, Vol. 39, No. 3, pp. 502-508, 1996.
    [6] S. Sivrioglu, K. Nonami, M. Saigo, “Low power consumption nonlinear control with H infinity compensator for a zero-bias flywheel AMB system,” JVC/Journal of Vibration and Control, Vol. 10, No. 8, pp.1151-1166, 2004.
    [7] M. Ichihara, T. Sagane, M. Saigou, H. Shida, H. Tajima, K. Seto, “A new modeling technique and control system design of a flexible rotor supported by active magnetic bearings for motion and vibration control,” Proceedings of the ASME Design Engineering Technical Conference, Vol. 5, No. B, pp. 923-930, 2003.
    [8] M. Habib, H. Inayat, I. Jawaid, “Fuzzy logic based control of rotor motion in active magnetic bearings,” 2004 IEEE Conference on Cybernetics and Intelligent Systems, pp.1218-1224, 2004.
    [9] S. L. Chen, S. H. Chen, S. T. Yan, “Stabilization of a current-controlled three-pole magnetic rotor-bearing system by integral sliding mode control,” 2004 IEEE International Conference on Networking, Sensing and Control, pp. 949-954, 2004.
    [10] O. Lang, J. Wassermann, H. Springer, “Adaptive vibration control of a rigid rotor supported by active magnetic bearings,” American Society of Mechanical Engineers, Vol. 95-GT-181, pp.6 1995.
    [11] M. Fujita, T. Namerikawa, F. Matsumura, K. Uchida, “μ-synthesis of an electromagnetic suspension system.” IEEE Transactions on Automatic Control, Vol. 40, No. 3, pp. 530-536, 1995.
    [12] F. Castano, D. Jimenez, F. R. Rubio, “A Combined H infinity /QFT Control of a Rotary Dryer,” Proceedings of the IEEE Conference on Decision and Control, Vol. 6, pp. 5909-5914, 2003.
    [13] C, Guangzhong, F. Suxiang, X. Gang, “The characteristics analysis of magnetic bearing based on H-infinity controller,” Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Vol. 1, pp. 752-756, 2004.
    [14] S. K. Nam, H. S. Kang, O. S. Song, “Fuzzy Hinf output feedback control for rotor magnetic bearing system,” IEEE International Conference on Plasma Science, Vol. 1, pp. 455-459, 2002.
    [15] H. Chapellat, L. H. Keel, S. P. Bhattacharyya, “Stability margins for multilinear interval control systems,” Proceedings of the IEEE Conference on Decision and Control, pp. 894-899, 1992.
    [16] H. Chapellat, M. Dahlch, S. P. Bhattacharyya, “Robust stability manifolds for multilinear interval systems,” IEEE Transactions on Automatic Control, Vol. 38, No. 2, pp. 314-318, 1993.
    [17] H. Chapellat, L. H. Keel, S. P. Bhattacharyya, “Extremal robustness properties of multilinear interval systems,” Automatica, Vol. 30, No. 6, pp. 1037-1042, 1994.
    [18] R. Hernandez, S. Dormido, “Kharitonov's theorem extension to interval polynomials which can drop in degree: a Nyquist approach,” IEEE Transactions on Automatic Control, Vol. 41, No. 7, pp. 1009-1012, 1996.
    [19] M. Pachter, T. Kobylarz, C. H. Houpis, “Literal Nyquist stability criterion for MIMO control systems,” International Journal of Control, Vol. 63, No. 1, pp. 55-65 1996.
    [20] S. Sivrioglu, K. Nonami, “Sliding mode control with time-varying hyperplane for AMB systems,” IEEE/ASME Transactions on Mechatronics, Vol. 3, No. 1, pp. 51-59, 1998.
    [21] 黃忠良, “磁懸浮與磁力軸承:磁力懸浮系統工程及磁力軸承技術,” 復漢出版社, 2001.
    [22] 楊憲東, 葉芳栢, “線性與非線性 控制理論:Game Theoretic Approach,” 全華科技圖書股份有限公司, 1997
    [23] S. P. Bhattacharyya, H. Chapellat, L. H. Keel, “Robust Control: The Parametric Approach,” Prentice Hall PTR, Chap. 5, 1995.
    [24] H. Chapellat, S P. Bhattacharyya, “A generalization of Kharitonov’s theorem: robust stability of interval plants,” IEEE Transactions on Automatic Control, Vol. AC-34, pp. 306-311, 1989.
    [25] S. P. Bhattacharyya, H. Chapellat, L. H. Keel, “Robust Control: The Parametric Approach,” Prentice Hall PTR, Chap. 2, 1995.
    [26] A. C. Bartlett, C. V. Hollot, H. Lin, “Root location of an entire polytope of polynomials: it suffices to check the edges,” Mathematics of Controls, Signals and Systems, Vol. 1, pp. 61-71, 1988.
    [27] H. Chapellat, L. H. Keel, S. P. Bhattacharyya, “Stability Margins for Multilinear Interval Control System,” Proceedings of the IEEE Conference on Decision and Control, pp. 894-899, 1992.
    [28] H. Chapellat, M. Dahleh, S. P. Bhattacharyya, “Extrmal manifolds in robust stability,” Tech, Rep., TCSP Report, Texas A&M University, July, 1990.
    [29] A. G. L. Macfarlane, I. Postlethwaite, “The generalized Nyquist stability criterion and multivariable root loci,” International Journal of Control, Vol. 25, pp. 81-127, 1977.
    [30] M. Pachter, T. Kobylarz, C. H. Houpis, “Literal Nyquist stability criterion for MIMO control system,” International Journal of Control, Vol. 63, No. 1, pp. 55-65, 1996.

    下載圖示 校內:2006-08-01公開
    校外:2006-08-01公開
    QR CODE