簡易檢索 / 詳目顯示

研究生: 張惠媗
Chang, Hui-Hsuan
論文名稱: 在UVB照射情形下奈米氧化鋅對於自噬作用與發炎反應在人類角質細胞與巨噬細胞所誘發之毒性探討
The role of autophagy and inflammation in zinc oxide nanoparticle – induced toxicity in human keratinocyte and macrophage under UVB irradiation
指導教授: 王應然
Wang, Ying-Jan
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 65
中文關鍵詞: 奈米氧化鋅紫外光-B巨噬細胞發炎體自噬作用
外文關鍵詞: Zinc oxide nanoparticles, UVB, Macrophage, Inflammasome, Autophagy
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   奈米氧化鋅(ZnONPs,粒徑小於100奈米),為工程奈米粒子(ENPS)其中之一,目前被廣泛的使用並添加於許多消費產品當中,其中在防曬乳中為一重要成分,也因此增加人體暴露奈米氧化鋅的機會。然而,目前對於奈米氧化鋅所造成的毒性以及危害風險的了解仍不足。本研究之目的為探討在皮膚受損與發炎的情況之下,暴露奈米氧化鋅是否會透過自噬功能失調而引起巨噬細胞進一步的促發炎現象。在體外實驗中,透過trypan blue來計算細胞存活率,並透過流式細胞儀對自體吞噬作用與細胞凋亡百分比進行分析。自噬作用與發炎體相關蛋白的表現則使用西方墨點法來分析。在動物實驗中,使用SKH:HR-1無毛鼠建立UVB誘導皮膚損傷的模式。利用H&E組織切片染色觀察皮膚組織的病理變化,並量測皮膚經皮水分散失的表現情形,組織相關蛋白使用免疫組織化學染色 (IHC) 和西方墨點法分析表現量。細胞實驗方面,以不同劑量之紫外線與奈米氧化鋅暴露24小時並計算細胞存活率,最後選定以導致HaCaT細胞存活率在50%以下之紫外線 (150 mJ/cm2) 以及奈米氧化鋅 (10, 12.5 μg/ml) 劑量組別來模擬皮膚受損情形並進行後續實驗。在HaCaT細胞株合併暴露組中發現自體吞噬相關蛋白LC3-II和p62在暴露24小時後呈現增加的情形,同時NLRP3表現亦增加,透過螢光顯微鏡觀察奈米氧化鋅在短時間內 (4小時) 會經由細胞攝入並分布至溶酶體當中,並且也發現p62在不同時間點中的累積情形,同時應證了自體吞噬功能失調的結果。而THP-1細胞株暴露奈米氧化鋅後也發現到發炎體相關的蛋白NLRP3、ASC、caspase-1、cathepsin B的表現增加。在動物實驗方面,組織切片染色結果發現先誘導曬傷之合併暴露組有明顯的角質層剝落與表皮層增厚的情形,皮膚功能相關指標之經皮水分散失也在相同之合併暴露組呈現明顯上升,並且奈米氧化鋅也會因表皮層受損而更容易穿透至皮膚深層,可能導致奈米氧化鋅對皮膚的影響時間增加。同時也發現皮膚修復相關蛋白galectin-7的表現減少與IL-1β增加的現象,證明了皮膚先誘導曬傷後,奈米氧化鋅會大幅影響皮膚的受損與發炎情形。根據以上結果顯示,紫外線合併暴露奈米氧化鋅可能藉由誘發自體吞噬失調,進一步造成NLRP3 inflammasome的活化及增加,導致發炎激素的表現增加,並使皮膚受損及發炎情形更為嚴重。

    SUMMARY
    Zinc oxide nanoparticles (ZNONPs) have been widely formulated in sunscreens as protective agents against exposure to ultraviolet radiation. Many prior studies have concluded that NPs do not penetrate healthy skin, but damaged skin slightly enhanced metal oxide NPs penetration. Therefore, hazard evaluation of ZnONPs exposure in different situation should be investigated urgently. In this study, we explored the toxic and inflammatory effect of ZnONPs on HaCaT, THP-1 cells and animal model. Results demonstrated UVB exposure enhanced ZnONPs-induced cytotoxic, autophagy and apoptosis percentage, also the expression of LC3-II, p62, NLRP3 were enhanced in UVB and ZnONPs cotreated groups in HaCaT cells. We also found uptake of ZnONPs in lysosome and p62 accumulation as time goes on, it may mean the disruption of autophagic flux-usually caused more inflammation and cell damage . Over-expression of inflammatory proteins in THP-1 cells also showed immunotoxicity after exposure to ZnONPs. In in vivo study , after sunburn occurred, ZnONPs enhanced significantly more inflammatory responses and severe damage than cotreat groups with healthy skins and alone groups, meanwhile, skin repair was also interfered with ZnONPs. In summary, this study found that UVB exposure enhanced ZnONPs toxicity and the potential mechanism is caused by NLRP3-inflammasome activation and the damage of skin repair system.

    第一章、序論 1 第二章、文獻回顧 2 第一節、工業奈米材料之應用與發展 2 第二節、奈米氧化鋅之特性與生物效應 2 (1) 奈米氧化鋅的特性及應用 2 (2) 奈米氧化鋅在in vitro及 in vivo之毒性 3 第三節、人體皮膚結構與保護特性 4 第四節、奈米粒子(NPs)於皮膚之暴露評估與研究進展 6 第五節、紫外線誘導之皮膚損傷與發炎反應 7 第六節、自噬作用(Autophagy)與發炎反應之作用機制 8 第七節、奈米粒子導致自噬作用失調(Autophagy dysfunction) 10 第三章、研究目的 12 第四章、研究架構 13 第五章、研究材料與方法 15 第一節、研究材料 15 一、細胞 15 二、動物 15 三、儀器 16 四、試劑與耗材 17 五、溶液 18 第二節、研究方法與實驗步驟 19 一、奈米氧化鋅微粒合成 19 二、螢光奈米氧化鋅微粒合成 20 三、奈米氧化鋅比表面積計算 21 四、細胞解凍 21 五、細胞冷凍 21 六、細胞培養 22 七、巨噬細胞分化 22 八、細胞存活率(Trypan Blue) 22 九、細胞凋亡(apoptosis)分析 23 十、細胞自體吞噬(Autophagy)分析 23 十一、西方墨點法(Western Blot) 24 十二、紫外線UVB誘導皮膚曬傷之動物模式 24 十三、動物皮膚冷凍切片 24 十四、蘇木紫伊紅染色(Hematoxylin& Eosin Staining) 25 十五、免疫組織染色(Immunohistochemistry) 25 十六、統計分析 26 第六章、研究結果 27 第一節、奈米氧化鋅微粒物化特性分析 27 第二節、奈米氧化鋅合併暴露紫外線對人類角質細胞與巨噬細胞之細胞毒性影響 27 第三節、奈米氧化鋅合併暴露紫外線在HaCaT細胞株所誘發之自體吞噬現象 29 第四節、奈米氧化鋅合併暴露紫外線在HaCaT細胞株所誘發之細胞凋亡現象 29 第五節、探討奈米氧化鋅合併暴露紫外線所誘發HaCaT細胞受損與自體吞噬之相關蛋白表現 30 第六節、探討奈米氧化鋅合併暴露紫外線在THP-1細胞所誘發之發炎相關蛋白表現 31 第七節、以螢光標記奈米氧化鋅並進行溶酶體染色探討奈米氧化鋅攝入之分布情形 31 第八節、自體吞噬蛋白p62在不同時間點之表現情形 32 第九節、利用小鼠模式探討奈米氧化鋅與紫外線及合併暴露對皮膚的毒性效應 32 (一)奈米氧化鋅與紫外線及合併暴露造成小鼠皮膚增厚之情形 32 (二)奈米氧化鋅與紫外線及合併暴露造成小鼠經皮水分散失之情形 33 (三)以螢光標記奈米氧化鋅探討微粒穿透皮膚之分布情形 34 (四)Galectin-7在小鼠皮膚的表現情形 34 (五)探討氧化鋅與紫外線及合併暴露在動物模式中所誘發的細胞受損、自體吞噬及發炎的相關蛋白表現 35 (六)發炎相關指標IL-1β在小鼠皮膚的表現情形 35 第七章、 討論 36 第八章、 結論與建議 40 第九章、 參考文獻 42 圖表 50

    Advedissian, T., Deshayes, F., & Viguier, M. (2017). Galectin-7 in Epithelial Homeostasis and Carcinomas. International journal of molecular sciences, 18(12), 2760.
    Advedissian, T., Proux-Gillardeaux, V., Nkosi, R., Peyret, G., Nguyen, T., Poirier, F., . . . Deshayes, F. (2017). E-cadherin dynamics is regulated by galectin-7 at epithelial cell surface. Scientific reports, 7(1), 17086.
    Amaral, E. P., Riteau, N., Moayeri, M., Maier, N., Mayer-Barber, K., Pereira, R. M., . . . D'Império Lima, M. R. (2018). Lysosomal cathepsin release is required for NLRP3 inflammasome activation by Mycobacterium tuberculosis in infected macrophages. Frontiers in Immunology, 9, 1427.
    Arnold, M. S., Avouris, P., Pan, Z. W., & Wang, Z. L. (2003). Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts. The Journal of Physical Chemistry B, 107, 659-663.
    Bae, H. C., Ryu, H. J., Jeong, S. H., Lee, E. Y., Park, Y.-H., Lee, K. G., . . . Son, S. W. (2011). Oxidative stress and apoptosis induced by ZnO nanoparticles in HaCaT cells. Molecular & Cellular Toxicology, 7(4), 333-337.
    Beek, W. J. E., Wienk, M. M., & Janssen, R. A. J. (2004). Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer. Advanced Materials, 16(12), 1009-1013. doi:10.1002/adma.200306659
    Cao, Z., Said, N., Wu, H. K., Kuwabara, I., Liu, F.-T., & Panjwani, N. (2003). Galectin-7 as a potential mediator of corneal epithelial cell migration. Archives of ophthalmology, 121(1), 82-86.
    Chauhan, S., Kumar, S., Jain, A., Ponpuak, M., Mudd, M. H., Kimura, T., . . . Bruun, J.-A. (2016). TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Developmental cell, 39(1), 13-27.
    Chuang, H.-C., Chuang, K.-J., Chen, J.-K., Hua, H.-E., Shen, Y.-L., Liao, W.-N., . . . Lee, K.-Y. (2017). Pulmonary pathobiology induced by zinc oxide nanoparticles in mice: A 24-hour and 28-day follow-up study. Toxicology and applied pharmacology, 327, 13-22.
    D'Orazio, J., Jarrett, S., Amaro-Ortiz, A., & Scott, T. (2013). UV radiation and the skin. International journal of molecular sciences, 14(6), 12222-12248.
    Delgado, M. A., Elmaoued, R. A., Davis, A. S., Kyei, G., & Deretic, V. (2008). Toll‐like receptors control autophagy. The EMBO journal, 27(7), 1110-1121.
    Elias, P. M., Cooper, E. R., Korc, A., & Brown, B. E. (1981). Percutaneous transport in relation to stratum corneum structure and lipid composition. Journal of Investigative Dermatology, 76(4), 297-301.
    Filon, F. L., Bello, D., Cherrie, J. W., Sleeuwenhoek, A., Spaan, S., & Brouwer, D. H. (2016). Occupational dermal exposure to nanoparticles and nano-enabled products: Part I—Factors affecting skin absorption. International journal of hygiene and environmental health, 219(6), 536-544.
    Filon, F. L., Mauro, M., Adami, G., Bovenzi, M., & Crosera, M. (2015). Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regulatory Toxicology and Pharmacology, 72(2), 310-322.
    Gendronneau, G., Sanii, S., Dang, T., Deshayes, F., Delacour, D., Pichard, E., . . . Magnaldo, T. (2015). Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair. PloS one, 10(3), e0119031.
    Gendronneau, G., Sidhu, S. S., Delacour, D., Dang, T., Calonne, C., Houzelstein, D., . . . Poirier, F. (2008). Galectin-7 in the control of epidermal homeostasis after injury. Molecular biology of the cell, 19(12), 5541-5549.
    George, S., Pokhrel, S., Xia, T., Gilbert, B., Ji, Z., Schowalter, M., . . . Mädler, L. (2009). Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS nano, 4(1), 15-29.
    Green, D. R., Galluzzi, L., & Kroemer, G. (2011). Mitochondria and the autophagy–inflammation–cell death axis in organismal aging. Science, 333(6046), 1109-1112.
    Grillo, R., Rosa, A. H., & Fraceto, L. F. (2015). Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere, 119, 608-619.
    Gukovskaya, A. S., & Gukovsky, I. (2012). Autophagy and pancreatitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 303(9), G993-G1003.
    Gulson, B., McCall, M., Korsch, M., Gomez, L., Casey, P., Oytam, Y., . . . Kinsley, L. (2010). Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicological Sciences, 118(1), 140-149.
    Hruza, L. L., & Pentland, A. P. (1993). Mechanisms of UV-induced inflammation. Journal of Investigative Dermatology, 100(1), S35-S41.
    Ilves, M., Palomäki, J., Vippola, M., Lehto, M., Savolainen, K., Savinko, T., & Alenius, H. (2014). Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model. Particle and fibre toxicology, 11(1), 38.
    Jang, Y. S., Lee, E. Y., Park, Y.-H., Jeong, S. H., Lee, S. G., Kim, Y.-R., . . . Son, S. W. (2012). The potential for skin irritation, phototoxicity, and sensitization of ZnO nanoparticles. Molecular & Cellular Toxicology, 8(2), 171-177.
    Keller, A. A., Vosti, W., Wang, H., & Lazareva, A. (2014). Release of engineered nanomaterials from personal care products throughout their life cycle. Journal of nanoparticle research, 16(7), 2489.
    Kroemer, G., & Jaattela, M. (2005). Lysosomes and autophagy in cell death control. Nature Reviews Cancer, 5(11), 886.
    Kulms, D., & Schwarz, T. (2002). Independent contribution of three different pathways to ultraviolet-B-induced apoptosis. Biochemical pharmacology, 64(5-6), 837-841.
    Kupper, T. S. (1990). Immune and inflammatory processes in cutaneous tissues. Mechanisms and speculations. The Journal of clinical investigation, 86(6), 1783-1789.
    Lee, S. H., Lee, H. R., Kim, Y.-R., & Kim, M.-K. (2012). Toxic response of zinc oxide nanoparticles in human epidermal keratinocyte HaCaT cells. Toxicology and environmental health sciences, 4(1), 14-18.
    Leite-Silva, V. R., Liu, D. C., Sanchez, W. Y., Studier, H., Mohammed, Y. H., Holmes, A., . . . Roberts, M. S. (2016). Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles. Nanomedicine, 11(10), 1193-1205.
    Li, R., Ji, Z., Qin, H., Kang, X., Sun, B., Wang, M., . . . Zou, H. (2014). Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing inflammasome. ACS nano, 8(10), 10280-10292.
    Liu, J.-H., Ma, X., Xu, Y., Tang, H., Yang, S.-T., Yang, Y.-F., . . . Liu, Y. (2017). Low toxicity and accumulation of zinc oxide nanoparticles in mice after 270-day consecutive dietary supplementation. Toxicology Research, 6(2), 134-143.
    Loden, M., OLSSON, H., Axell, T., & LINDE, Y. W. (1992). Friction, capacitance and transepidermal water loss (TEWL) in dry atopic and normal skin. British Journal of Dermatology, 126(2), 137-141.
    Ma, X., Wu, Y., Jin, S., Tian, Y., Zhang, X., Zhao, Y., . . . Liang, X.-J. (2011). Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS nano, 5(11), 8629-8639.
    Magnaldo, T., Fowlis, D., & Darmon, M. (1998). Galectin-7, a marker of all types of stratified epithelia. Differentiation, 63(3), 159-168.
    Mahrhauser, D., Nagelreiter, C., Baierl, A., Skipiol, J., & Valenta, C. (2015). Influence of a multiple emulsion, liposomes and a microemulsion gel on sebum, skin hydration and TEWL. International journal of cosmetic science, 37(2), 181-186.
    Manaia, E. B., Kaminski, R. C. K., Corrêa, M. A., & Chiavacci, L. A. (2013). Inorganic UV filters. Brazilian Journal of Pharmaceutical Sciences, 49(2), 201-209.
    Maru, G. B., Gandhi, K., Ramchandani, A., & Kumar, G. (2014). The role of inflammation in skin cancer Inflammation and Cancer (pp. 437-469): Springer.
    Mateo, M., Generous, A., Sinn, P. L., & Cattaneo, R. (2015). Connections matter− how viruses use cell–cell adhesion components. J Cell Sci, 128(3), 431-439.
    Menon, G. K. (2002). New insights into skin structure: scratching the surface. Advanced drug delivery reviews, 54, S3-S17.
    Mitchnick, M. A., Fairhurst, D., Pinnell, S. R., & Baier, M. (1999). Microfine zinc oxide (Z-Cote) as a photostable UVA/UVB sunblock agent. Journal of the American Academy of Dermatology, 40, 85-90.
    Mizushima, N., Yoshimori, T., & Levine, B. (2010). Methods in mammalian autophagy research. Cell, 140(3), 313-326.
    Moon, H. J., Lee, S. R., Shim, S. N., Jeong, S. H., Stonik, V. A., Rasskazov, V. A., . . . Lee, Y. H. (2008). Fucoidan inhibits UVB-induced MMP-1 expression in human skin fibroblasts. Biological and Pharmaceutical Bulletin, 31(2), 284-289.
    Mortensen, L. J., Jatana, S., Gelein, R., De Benedetto, A., De Mesy Bentley, K. L., Beck, L. A., . . . DeLouise, L. A. (2013). Quantification of quantum dot murine skin penetration with UVR barrier impairment. Nanotoxicology, 7(8), 1386-1398.
    Nakahira, K., & Choi, A. M. (2013). Autophagy: a potential therapeutic target in lung diseases. American Journal of Physiology-Lung Cellular and Molecular Physiology, 305(2), L93-L107.
    Newman, M. D., Stotland, M., & Ellis, J. I. (2009). The safety of nanosized particles in titanium dioxide–and zinc oxide–based sunscreens. Journal of the American Academy of Dermatology, 61(4), 685-692.
    Pal, A., Alam, S., Chauhan, L. K., Saxena, P. N., Kumar, M., Ansari, G. N., . . . Ansari, K. M. (2016). UVB exposure enhanced the dermal penetration of zinc oxide nanoparticles and induced inflammatory responses through oxidative stress mediated by MAPKs and NF-κB signaling in SKH-1 hairless mouse skin. Toxicology Research, 5(4), 1066-1077.
    Rawlings, A. V., & Harding, C. R. (2004). Moisturization and skin barrier function. Dermatologic therapy, 17(s1), 43-48.
    Rawlings, A. V., Scott, I. R., Harding, C. R., & Bowser, P. A. (1994). Stratum corneum moisturization at the molecular level. Journal of Investigative Dermatology, 103(5), 731-740.
    Rondanino, C., Poland, P. A., Kinlough, C. L., Li, H., Rbaibi, Y., Myerburg, M. M., . . . Hallows, K. R. (2011). Galectin-7 modulates the length of the primary cilia and wound repair in polarized kidney epithelial cells. American Journal of Physiology-Renal Physiology, 301(3), F622-F633.
    Roy, R., Das, M., & Dwivedi, P. D. (2015). Toxicological mode of action of ZnO nanoparticles: impact on immune cells. Molecular immunology, 63(2), 184-192.
    Sadrieh, N., Wokovich, A. M., Gopee, N. V., Zheng, J., Haines, D., Parmiter, D., . . . McNeil, S. E. (2010). Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano-and submicron-size TiO2 particles. Toxicological Sciences, 115(1), 156-166.
    Sager, T. M., Wolfarth, M., Leonard, S. S., Morris, A. M., Porter, D. W., Castranova, V., & Holian, A. (2016). Role of engineered metal oxide nanoparticle agglomeration in reactive oxygen species generation and cathepsin B release in NLRP3 inflammasome activation and pulmonary toxicity. Inhalation toxicology, 28(14), 686-697.
    Saitoh, T., Fujita, N., Jang, M. H., Uematsu, S., Yang, B.-G., Satoh, T., . . . Komatsu, M. (2008). Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature, 456(7219), 264.
    Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. Journal of Microbiological Methods, 54(2), 177-182. doi:10.1016/s0167-7012(03)00037-x
    Scherzad, A., Meyer, T., Kleinsasser, N., & Hackenberg, S. (2017). Molecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity Short Running Title: Genotoxicity of ZnO NPs. Materials, 10(12), 1427.
    Seil, J. T., & Webster, T. J. (2012). Antimicrobial applications of nanotechnology: methods and literature. International Journal of Nanomedicine, 7, 2767-2781. doi:https://doi.org/10.2147/IJN.S24805
    Shetty, P. K., Venuvanka, V., Jagani, H. V., Chethan, G. H., Ligade, V. S., Musmade, P. B., . . . Udupa, N. (2015). Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. International journal of nanomedicine, 10, 6477.
    Shi, C.-S., & Kehrl, J. H. (2008). MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. Journal of Biological Chemistry, 283(48), 33175-33182.
    Shi, C.-S., Shenderov, K., Huang, N.-N., Kabat, J., Abu-Asab, M., Fitzgerald, K. A., . . . Kehrl, J. H. (2012). Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nature immunology, 13(3), 255.
    Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., . . . Mohamad, D. (2015). Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett., 7(3), 219-242. doi:10.1007/s40820-015-0040-x
    Stern, S. T., Adiseshaiah, P. P., & Crist, R. M. (2012). Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Particle and fibre toxicology, 9(1), 20.
    Stoeger, T., Reinhard, C., Takenaka, S., Schroeppel, A., Karg, E., Ritter, B., . . . Schulz, H. (2006). Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental health perspectives, 114(3), 328.
    Travassos, L. H., Carneiro, L. A., Ramjeet, M., Hussey, S., Kim, Y.-G., Magalhães, J. G., . . . Le Bourhis, L. (2010). Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature immunology, 11(1), 55.
    Verdier‐Sévrain, S., & Bonté, F. (2007). Skin hydration: a review on its molecular mechanisms. Journal of cosmetic dermatology, 6(2), 75-82.
    Wan, B., Wang, Z.-X., Lv, Q.-Y., Dong, P.-X., Zhao, L.-X., Yang, Y., & Guo, L.-H. (2013). Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicology letters, 221(2), 118-127.
    Wang, C.-C., Wang, S., Xia, Q., He, W., Yin, J.-J., Fu, P. P., & Li, J.-H. (2013). Phototoxicity of zinc oxide nanoparticles in HaCaT keratinocytes-generation of oxidative DNA damage during UVA and visible light irradiation. Journal of nanoscience and nanotechnology, 13(6), 3880-3888.
    Wang, J., Yu, Y., Lu, K., Yang, M., Li, Y., Zhou, X., & Sun, Z. (2017). Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. International journal of nanomedicine, 12, 809.
    Wang, S. Q., Setlow, R., Berwick, M., Polsky, D., Marghoob, A. A., Kopf, A. W., & Bart, R. S. (2001). Ultraviolet A and melanoma: a review. Journal of the American Academy of Dermatology, 44(5), 837-846.
    Wertz, P. W. (2000). Lipids and barrier function of the skin. Acta Dermato-Venereologica, 80.
    Wertz, P. W., & van den Bergh, B. (1998). The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chemistry and physics of lipids, 91(2), 85-96.
    White, E., Karp, C., Strohecker, A. M., Guo, Y., & Mathew, R. (2010). Role of autophagy in suppression of inflammation and cancer. Current opinion in cell biology, 22(2), 212-217.
    Xia, T., Li, N., & Nel, A. E. (2009). Potential health impact of nanoparticles. Annual review of public health, 30, 137-150.
    Xie, Z., & Klionsky, D. J. (2007). Autophagosome formation: core machinery and adaptations. Nature cell biology, 9(10), 1102.
    Xu, Y., Jagannath, C., Liu, X.-D., Sharafkhaneh, A., Kolodziejska, K. E., & Eissa, N. T. (2007). Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity, 27(1), 135-144.
    Yanagisawa, R., Takano, H., Inoue, K.-i., Koike, E., Kamachi, T., Sadakane, K., & Ichinose, T. (2009). Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Experimental biology and medicine, 234(3), 314-322.
    Yu, K.-N., Yoon, T.-J., Minai-Tehrani, A., Kim, J.-E., Park, S. J., Jeong, M. S., . . . Cho, M.-H. (2013). Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicology in Vitro, 27(4), 1187-1195.
    Yuk, J.-M., & Jo, E.-K. (2013). Crosstalk between autophagy and inflammasomes. Molecules and cells, 36(5), 393-399.
    Zhang, J., Qin, X., Wang, B., Xu, G., Qin, Z., Wang, J., . . . Qiu, F. (2017). Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells. Cell death & disease, 8(7), e2954.
    Zhou, R., Yazdi, A. S., Menu, P., & Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221.

    下載圖示 校內:2023-08-21公開
    校外:2023-08-21公開
    QR CODE