| 研究生: |
葛薇宓 Ghavimi, Fayezeh |
|---|---|
| 論文名稱: |
LTE-A網路中M2M通訊之上行排程與功率分配以及下世代無線網路中針對M2M裝置的多重接取方法之研究 Uplink Scheduling and Power Allocation for M2M Communications in LTE-A Networks and Massive Multiple Access for M2M Communications in Next Generation Wireless Networks |
| 指導教授: |
陳曉華
Chen, Hsiao-Hwa |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | M2M通訊 、LTE-A 、排程 、分組 、功率分配 、單載波分頻分碼多工存取 、資源分配 、服務品質需求 、隨機存取 |
| 外文關鍵詞: | M2M communications, LTE-Advanced, Scheduling, grouping, Power allocation, SC-FDMA-CDMA, Resource allocation, QoS, Random access |
| 相關次數: | 點閱:245 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,無線個人通訊已經大大地改進了個體之間的資料傳輸。除了H2H通訊外,在蜂巢式網路中發展M2M通訊也逐漸受到矚目。其中,提供多樣性及好的服務品質(QoS)是M2M通訊中最重要的需求之一。在M2M通訊中,不同的服務品質需求(QoS)需要有合適的資源分配方法。在LTE-A網路的M2M通訊中,為使現有資源依據不同服務品質需求(QoS)而能夠妥善被分配給M2M裝置及H2H使用者,尋找合適的資源分配方法將是個很有挑戰性的議題。為滿足不同服務品質需求(QoS)進而有效地分配資源區塊(resource blocks),我們提出以下的M2M通訊方法:「將依據不同無線傳輸協定組成群組,在每個群組下再依據不同服務品質需求(QoS)組成小的群組」。並且,我們在單載波分頻多工存取(SC-FDMA)為基底的LTE-A網路中進行聯合的資源區塊和功率分配。我們將此架構表示成總流通量(sum-throughput)最大化問題,其限制條件必須滿足受限於LTE-A上行網路中單載波分頻多工存取(SC-FDMA)為基底的資源區塊與功率分配,並確保M2M裝置的服務品質需求(QoS)。由於使用單載波分頻多工存取(SC-FDMA)做為LTE-A上行網路的空中介面,增加了資源分配問題的複雜度。我們為克服分析和計算上的複雜度,於是我們將原問題轉換為二進制整數規劃問題(BIP),並用拉格朗茲對偶理論(Lagrange duality theory)求解對偶問題。我們也將提出的演算法與貪婪法比較。我們由模擬的結果可知,在滿足服務品質需求(QoS)下最大化流通量(throughput),我們提出的演算法表現較貪婪法好,並且為一個更接近窮舉法的設計。除此之外,為了闡述隨機存取中的擁塞問題,我們提出單載波分頻分碼多工存取(SC-FDMA-CDMA)機制,其中每個M2M裝置的前引訊號被分配到一個碼,使eNB可偵測到每個前引訊號,並決定有多少M2M裝置被一個前引訊號選到。在我們所提出的機制中,選擇相同前引訊號的裝置,藉著用相同的碼在相同的通道傳輸他們的資料。因此,大大地降低了隨機存取過程。除此之外,我們所提出的機制可以大大地降低M2M裝置資料傳輸所需求的資源區塊(resource blocks)數,透過合併M2M裝置產生的許多封包成為一個資源區塊(resource blocks)。更近一步地,不同長度的超級正交碼(DLSOC)被進一步提出,使得現行使用的碼產生的之多重存取干擾multiple access interference (MAI)和多路徑干擾multi-path interference (MI)問題,藉由應用超級正交碼的創新技術,在同步和非同步狀態下都會被大大地消除。
Recently, wireless personal communications have been widely proliferated to exchange data
among individuals. In addition to human-to-human (H2H) communications, the introduction
of machine-to-machine (M2M) communications into cellular networks is vigorously being developed. Providing diverse and strict quality of service (QoS) guarantees is one of the most important requirements in M2M communications. Such diverse QoS requirements particularly need for appropriate resource allocation that can be applied to M2M communications.
This issue becomes more challenging with the enabling of M2M communications in LTE-A networks as the available resources have to be shared between M2M devices and H2H users, owning different QoS requirements. To efficiently allocate resource blocks (RBs) for M2M devices while satisfying QoS requirements, we propose the group based M2M communications in which M2M devices are grouped based on their wireless transmission protocols and clustered based on QoS characteristics and requirements. Then, we perform joint RB and power allocation in SC-FDMA-based LTE-A network. We formulate our framework as a sum-throughput maximization problem while respecting all the constraints associated with the SC-FDMA regarding to the RB and power allocation in LTE-A uplink network and considering QoS guarantees for the M2M devices. The specific constraints of SC-FDMA as an uplink air interface in LTE-A networks complicate the resource allocation problem. We overcome the analytical and computational intractability by first transforming the original problem into a binary integer programming (BIP) problem and then formulating its dual problem using the Lagrange duality theory. The proposed algorithm is compared with Greedy algorithm [35] as well. Numerical results show that the proposed algorithm not only outperforms Greedy algorithm in terms of throughput maximization while satisfying QoS requirements, but also performs closer to the optimal design. On the other hand, to address congestion problem in random access (RA), we introduce SC-FDMA-CDMA scheme in which a code is assigned to the preamble sent by M2M devices enabling eNB to detect each preamble and also determine how many M2M devices have selected each preamble. In the proposed scheme, the devices that selected the same preamble, transmit their data at the same data channel by utilizing the code. Hence, the RA process is significantly reduced. In addition, the proposed scheme can significantly reduce the number of RBs required to transmit data of M2M devices through incorporating many packets generated by M2M devices into one RB. Furthermore, different lengths super orthogonal codes (DLSOC) are further proposed so that the issues such as multiple access interference (MAI) and multipath interference (MI) associated with currently used codes could be significantly eliminated for both synchronous and asynchronous cases by utilizing the novel technology of the super orthogonal
Index Terms – M2M communications, LTE-Advanced, Scheduling, grouping, Power allocation, SC-FDMA-CDMA, Resource allocation, QoS, Random access
[1] F. Ghavimi and H. H Chen, ”M2M Communications in 3GPP LTE/LTE-A Networks: Architectures, Service Requirements, Challenges, and Applications”, IEEE Commun. Surveys & Tutorials, vol. 17, no. 2, pp. 525-549, 2015.
[2] F. Ghavimi, Y. W. Lu, and H. H Chen, ”Uplink Scheduling and Power Allocation for M2M Communications in SC-FDMA based LTE-A Networks with QoS Guarantees”, IEEE Trans. on Vehicular Technology, 2015. DOI 10.1109/TVT.2016.2635262
[3] H. G. Myung, J. Lim, and D. J. Goodman, Single carrier FDMA for uplink wireless transmission, IEEE Veh. Technol. Mag, vol. 1, no. 3, pp. 30-38, 2006.
[4] K. Seong, M. Mohseni, and J. Cioffi, ”Optimal resource allocation for OFDMA downlink systems,” In Proceeding of IEEE ISIT, Seattle, WA, Jul. 2006.
[5] W. Yu and R. Lui, ”Dual method for non-convex spectrum optimization of multicarrier systems,” IEEE Trans. on Communications, vol. 54, no. 7, pp. 1310-1322, Jul. 2006.
[6] A. Laya, L. Alonso, and J. Zarate, ”Is the Random Access Channel of LTE and LTE-A Suitable for M2M Communications? A Survey of Alternatives”, IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 4-16, 2014.
[7] J. Seo and V. Leung, ”Approximate Queuing Performance of a Multipacket Reception Slotted ALOHA System with an Exponential Backoff Algorithm”, Fourth International Conference on Communications and Networking, China, 2009, pp. 1-5.
[8] 3GPP TR 37.868 V11.0.0, ”Study on RAN Improvements for Machine Type Communications,”September 2011.
[9] M. H. Cheung, H. Mohsenian-Rad, V.Wong, and R. Schober, ”Utility-Optimal Access for Wireless MUltimedia Networks”, IEEEWireless Communications Letters, vol. 1, no. 4, pp. 340-343, Aug. 2012.
[10] C. Joo, ”On Random Access Scheduling for Multimedia Traffic in Multihop Wireless Networks with Fading Channels”, IEEE Transactions on Mobile Computing, vol. 12, no. 4, pp. 647-656, App. 2013.
[11] M.-Y. Cheng, G.-Y. Lin, H.-Y. Wei, and A., ”Performance evaluation of radio access network overloading fram machine type communications in LTE-A Networks”, in Proc. IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 248-252, Apr. 2012.
[12] S.-Y Lien, T.-H. Liao, C.-Y. Kao, K.-C. Chen, Cooperative access class barring for machine-tomachine communication, IEEE Transaction on Wireless Communication 11 (1) (2012) 27-32.
[13] H. Wu, C. Zhu, R. J. La, X. Liu, and Y. Zhang, ”FASA: Accelerated S-ALOHA using access history for event-driven M2M communications”, IEEE/ACM Trans. Netw., vol. 21, no. 6, pp.1904-1907, Dec. 2013.
[14] J. Liu, Y. Kawamoto, H. Nishiyama, N. Kato, and N. Kadowaki, ”Device-to-device communications achieve efficient load balancing in LTE-Advanced networks”, IEEEWireless Communications Mag., vol. 21, no. 2, pp. 57-65, May 2014.
[15] J. Liu, N. Kato, J. Ma, and N. Kadowaki, ”Device-to-Device Communication in LTE-Advanced Networks: A Survey”, IEEE Commun. Surveys & Tutorials, vol. 17, no. 4, pp. 1923-1939, 2015.
[16] R. Kim, ”Snoop based Group Communication Scheme in Cellular Machine-to-Machine Communications”, IEEE ICIT, Sep. 2010.
[17] S.-Y. Lien, K.-C. Chen, and Y. Lin, ”Toward ubiquitous massive accesses in 3GPP machine-tomachine communications,” IEEE Commun. Mag., vol. 49, no.4, Apr. 2011, pp. 66-74.
[18] T. Kwon and J.-W. Chon, ”Multi-group random access resource allocation for M2M devices in multicell systems”, IEEE Commun. Letters,, vol. 16, no. 6, pp. 834-837, Jun. 2012.
[19] F. M. Lima, T. F. Maciel, W. C. Freitas, and F. R. P. Cavalcanti, ”Resource assignment for rate maximization with qos guarantees in multiservice wireless systems”, IEEE Trans. Veh. Technol., vol. 61, no. 3, pp. 1318-1332, Mar. 2012.
[20] J. Abouei, A. Bayesteh, and A. K. Khandani, ”On the delay-throughput tradeoff in distributed wireless networks”, IEEE Trans. Info. Theory, vol. 58, no. 4, pp. 2159-2174, Apr. 2012.
[21] H. Zhang, Y. Ma, D. Yuan, and H. H. Chen, ”Quality-of-service driven power and sub-carrier allocation policy for vehicular communication networks”, IEEE J. Sel. Areas Commun., vol. 29, no. 1, pp. 197-206, Jan. 2011.
[22] J. Liu, H. Guo, H. Nishiyama, H. Ujikawa, K. Suzuki, and N. Kato, ”New Perspectives on Future Smart FiWi Networks: Scalability, Reliability, and Energy Efficiency”, IEEE Commun. Surveys & Tutorials, vol. 18, no. 2, pp. 1045-1072, 2016.
[23] H. S. Dhillon, H. C. Huang, H. Viswanathan, and R. A. Valenzuela, ”Power-efficient system design for cellular-based machine-to-machine communications,” IEEE Trans. Wireless Commun., vol. 12, no. 11, pp. 5740-5753, Nov. 2013.
[24] Y. Zhang, H. C. Huang, H. Viswanathan, and R. A. Valenzuela, ”Cognitive machine-to-machine communications: Visions and potentials for the smart grid,” IEEE Netw., vol. 26, no. 3, pp. 6-13, May/Jun. 2012.
[25] A. G. Gotsis, A. S. Lioumpas, and A. Alexious, ”M2M scheduling over LTE: Challenges and new perspectives”, IEEE Veh. Technol. Mag., vol. 7, no. 3, pp. 34-39, Sep. 2012.
[26] A. S. Lioumpas and A. Alexious, ”Uplink scheduling for machine-to-machine communications in LTE-based cellular systems”, in Proc. IEEE GLOBECOM Workshops, Houston, TX, USA, Dec. 2011, pp. 353-357.
[27] H. S. Dhillon, H. C. Huang, H. Viswanathan, and R. A. Valenzuela, ”On resource allocation for machine-to-machine (M2M) communications in cellular networks”, in Proc. IEEE GLOBECOM Workshops, Anaheim, CA, USA, Dec. 2012, pp. 1638-1643.
[28] M. Al-Rawi, R. Jantti, J. Torsner, and M. Sagfors, ”Opportunistic uplink scheduling for 3G LTE
systems,” In Proceedings of 4th IEEE innovations in information technology, 2007.
[29] F. Sokmen and T. Girici, Uplink Resource Allocation for Single-Carrier FDMA Systems European wireless conference, pp. 339-345, Apr. 2010.
[30] J. Lim, H. G. Myung, K. Oh, and D. J. Goodman, Channel dependent scheduling of uplink single carrier FDMA systems IEE 64th vehicular technology conference, VTC-2006 Fall, pp. 1-5, Sep. 2006.
[31] J. Lim, H. G. Myung, K. Oh, and D. J. Goodman, ”Proportional fair scheduling of uplink single
carrier FDMA systems,” In Proceedings of IEEE PIMRC, pp. 1-6, Sep. 2006.
[32] S. Lee, I. Pefkianakis, A. Meyerson, S. Xu, and S. Lu, Proportional Fair Frequency-Domain
Packet Scheduling for 3GPP LTE Uplink, in Proc. IEEE INFOCOM 09, Rio de Janeiro, Brazil, Apr. 2009.
[33] M. Wang, Z. Zhong, and Q. Liu, ”Resource allocation for SC-FDMA in LTE uplink,” in Proc.
IEEE Int. Conf. SOLI, pp. 601-604, Jul. 2011.
[34] O. Delgado and B. Jaumard, ”Scheduling and resource allocation in LTE uplink with a delay requirement,” in Proc. CNSR, pp. 268-275, May 2010.
[35] I. Wong, O. Oteri, and W. McCoy, ”Optimal Resource Allocation in Uplink SC-FDMA Systems,”
IEEE Trans. on Wireless Communications, vol. 8, no. 5, pp. 2161-2165, May 2009.
[36] K. Zheng, F. Hu, W. Wang, W. Xiang, and M. Dohler, ”Radio resource allocation in LTEadvanced
cellular networks with M2M communications,” IEEE Commun. Mag., vol. 50, no.7, pp. 184-192, Jul.2012.
[37] A. Ahmad and M. Assaad, ”Power efficient resource allocation in SC-FDMA systems,” in Proc. IEEE Int. Symp. PIMRC, pp. 1351-1355, Sep. 2011.
[38] D. Dechene and A. Shami, ”Energy efficient resource allocation in SC-FDMA uplink with synchronous HARQ constraints,” in Proc. IEEE ICC, pp. 1-5, Jun. 2011.
[39] A. Aijaz and A. Aghvami, ”On radio resource allocation in LTE networks with machine-tomachine
communications,” in Proc. IEEE VTC Spring, pp. 1-5, Jun. 2013.
[40] 3GPP, Overview of 3GPP release 8 v.0.1.1, Tech. Rep., June 2010.
[41] 3GPP TS 36.300 V11.2.0, ”Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
Universal Terrestrial Radio Access Network (EUTRAN), Overall Description,” June 2012.
[42] 3GPP, TS 36.323 Packet Data Convergence Protocol (PDCP) specification, Tech. Rep., December
2009 [online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36323.htm.
[43] 3GPP, TS 36.322 Radio Link Control (RLC) protocol specification, Tech. Rep., March 2010
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36322.htm.
[44] 3GPP, TS 36.321 Medium Access Control (MAC) protocol specification, Tech. Rep., March
2010 [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36321.htm.
[45] 3GPP, TS 36.331 Radio Resource Control (RRC), Tech. Rep., March 2010 [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/36331.htm.
[46] ETSI TS 123 682, V11.4.0, “Architecture enhancements to facilitate communications with packet data networks and applications” Jun. 2013.
[47] 3GPP TS 22.368 V11.5.0, “Service Requirements for Machine-Type Communications,” Sep. 2012.
[48] 3GPP TS 23.204 V11.1.0; 3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Support of Short Message Service (SMS) Over Generic 3GPP Internet Protocol (IP) Access; Stage 2; Release 11; Sep. 2011; 53 pages.
[49] 3GPP, “Architecture enhancements to facilitate communications with packet data networks and
applications” TS 23.682 V11.2.0, 2012.
[50] 3GPP TR 23.039, “Interface Protocols for the Connection of Short Message Service Centers (SMSSCs) to Short Message Entities (SMEs)”
[51] 3GPP, “System improvements for machine-type communications; (Release 11), v.1.6.0,” TR 23.888, 2011-11.
[52] 3GPP, “Facilitating Machine to Machine Communication in GSM and UMTS,” TR 22.868, Mar. 2007.
[53] K. Satoh, S. Miller, Z. Yang, A. Scrase, C. Blum, W. J. Kyu, and Y. Yukio. (2012) Leading ict
standards development organizations launch onem2m. http://www.onem2m.org/press/oneM2M
[54] 3GPP TS 23.003 V10.5.0, ”Numbering, addressing and identification,” Mar. 2012.
[55] 3GPP TS 23.003 V10.0.0 (2010-12) Technical Specification 3rd Generation Partnership Project;
Technical Specification Group Core Network and Terminals; Numbering, addressing and identification
(Release 10).
[56] Ericsson white paper: “more than 50 billion connected devices”, 284 23-3149 Uen, February 2011.
[57] 3GPP TR22.868 vb.0.0 (2007-03): Technical Report 3rd Generation Partnership Project; Technical
Specification Group Services and System Aspects; Study on Facilitating Machine to Machine Communication in 3GPP Systems; (Release 8).
[58] R. Hinden and S. Deering, ”IP Version 6 Addressing Architecture,” IETF, RFC 4291, February 2006. http://www.ietf.org/rfc/rfc4291.txt
[59] M. Gabriel, K.Nandakishore, H. Jonathan, and C. David. ”Transmission of IPv6 Packets over IEEE 802.15.4 Networks.” IETF, RFC 4944, September 2007. http://www.ietf.org/rfc/rfc4944.txt
[60] E. Hossain, Z. Han, H. V. Poor, “Smart Grid Communications and Networking”, Jun. 2012.
[61] J. Damnjanovic, Y. Montojo, T.Wei, T. Ji, M. Luo, M. Vajapeyam, T. Yoo, O. Song, D. Malladi,
A survey on 3GPP heterogeneous networks, IEEEWireless Communication 18 (3) (2011) 10-21.
[62] D. Lopez-Perez, I. Guvenc, G.D.L. Roche, M. Kountouris, T.Q.S. Quek, J. Zhang, Enhanced
intercel interference coordination challenges in heterogeneous networks, IEEE Wireless Communication
18(3) (2011) 22-30
[63] X. Y.Wang, P.-H Ho, K.-C. Chen, Interference analysis and mitigation for cognitive-empowered
femtocells through stochastic dual control, IEEE Transaction onWireless Communication 11 (6) (2012) 2065-2075.
[64] Y.-S. Liang, W.-H. Chung, G.-K. Ni, I.-Y. Chen, H. Zhang, S.-Y. Kuo, Resource allocation with interference avoidance in OFDMA femtocell networks, IEEE Transaction on Vehicular Technology 61 (5) (2012) 2243-2255.
[65] Y. Sun, R.P. Jover, X. Wang, Uplink interference mitigation for OFDMA femtocell networks, IEEE Transaction on Wireless Communication 11 (2) (2012) 614-625.
[66] O. Bulakci, S. Redana, B. Raaf, J. Hamalainen, Impact of power control optimization on the
system performance of relay based LTE-advanced heterogeneous networks, Journal of Communication & Networking 13 (4) (2012) 345-359.
[67] R. Combes, Z. Altman, E. Altman, Self-organizing relays: dimensioning, self-optimization, and
learning, IEEE Transaction on Network and Service Management, in press.
[68] ETSI MCC, ”R2-101881: Report of 3GPP TSG RAN WG2 Meeting 68bis,” 3GPP TSG RAN WG2 Mtg. 68bis, Feb. 2010.
[69] K.S. Ko, M.J. Kim, K.Y. Bae, D.K. Sung, J.H. Kim, J.Y. Ahn, A novel random access for fixed-location machine-to-machine communication in OFDMA based systems, IEEE Communications Letters 16 (9) (2012) 1428-1430.
[70] ZTE, R2-104662: MTC Simulation Results with Specific Solutions, 3GPP TSG RAN WG2 Meeting 71, Aug. 2010.
[71] CATT, R2-100182: Access Control of MTC Devices, 3GPP TSG RAN WG2 Meeting 68bis, Jan. 2010.
[72] S.-E. Wei, H.-Y Hsieh, and H.-J. Su, Enabling dense machine-to-machine communications through interference-controlled clustering, in: Proc. IEEE IWCMC, 2012.
[73] C.Y. Ho, C.-Y. Huang, Energy-saving massive access control and resource allocation schemes for M2M communications in OFDMA cellular networks, IEEE Communications Letters 1 (3) (2012) 209-211.
[74] “Machine to Machine (M2M) Communication Study Report,” IEEE 802.16ppc-10/0002r7, 2010.
[75] ”IEEE Standard for local and metropolitan area networks Part 16: Air Interface for Broadband
Wireless Access Systems,” IEEE Std 802.16-2009 (Revision of IEEE Std 802.16-2004), May 2009.
[76] “IEEE 802.16m Draft Amendment to IEEE Standard for Local and Metropolitan Area Networks,”
IEEE P802.16m/D7, July 2010.
[77] K. Doppler, M. Rinne, C. Wijting, C.B. Ribeiro, K. Hugl, Device-to-device communication as
an underly to LTE-advanced networks, IEEE Commun. Mag., vol 47, no. 12, pp. 42-49, 2009.
[78] 3GPP RAN WS, RWS-120003: LTE Release 12 and Beyond, in: 3GPP RAN WS on Rel-12 and onwards, June 2012.
[79] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklos, Z. Turanyi, Design aspects
of network assisted device-to-device communications, IEEE Commun. Mag., vol. 50, no. 3, pp.170-177, 2012.
[80] R. Bhatia, L. Li, H. Luo, and R. Ramjee, ”ICAM: Integrated cellular and ad hoc multicast,”
IEEE Trans. Mobile Comput., vol. 5, no. 8, pp. 1004-1015, Aug. 2006.
[81] F. Hou, L. X. Cai, P. H. Ho, X. Shen, and J. Zhang, ”A cooperative multicast scheduling scheme
for multimedia services in IEEE 802.16 networks,” IEEE Trans. Wireless Commun., vol. 8, no.3, pp. 1508-1519, Mar. 2009.
[82] Q. Zhang, F. H. P. Fitzek, and V. B. Iversen, ”Design and performance evaluation of cooperative
retransmission scheme for reliable multicast services in cellular controlled P2P networks,” in
Proc. IEEE PIMRC, Athens, Greece, Sep. 2007, pp. 1-5.
[83] S. C. Spinella, G. Araniti, A. Iera, and A. Molinaro, ”Integration of ad hoc networks with
infrastructured systems for multicast services provisioning,” in Proc. Int. Conf. Ultra Modern
Telecommun. Workshops, St. Petersburg, Russia, Oct. 2009, pp. 1-6.
[84] F. H. P. Fitzek and M. Katz, CognitiveWireless Networks: Concepts, Methodologies and Visions
Inspiring the Age of Enlightenment of Wireless Communications. New York: Springer- Verlag, 2007.
[85] H. Xing and S. Hakola, ”The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system,” in Proc. IEEE PIMRC, Istanbul, Turkey, Sep. 2010, pp. 1775-1780.
[86] J. Lehtomaki, I. Suliman, J. Vartiainen, M. Bennis, and K. Umbayashi, ”Direct communication
between terminals in infrastructure based networks,” in Proc. ICT-MobileSummit, Stockholm, Sweden, Jun. 2008, pp. 1-8.
[87] L. Al-Kanj and Z. Dawy, ”Optimized energy efficient content distribution over wireless networks
with mobile-to-mobile cooperation,” in Proc. IEEE 17th Int. Conf. Telecommun., Apr. 2010, pp. 471-475.
[88] B. Wang, L. Chen, X. Chen, X. Zhang, and D. Yang, ”Resource allocation optimization for device-to-device communication underlaying cellular networks,” in Proc. IEEE VTC, Budapest, Hungary, May 2011, pp. 1-6.
[89] C. H. Yu, O. Trikkonen, K. Doppler, and C. Ribeiro, ”Power optimization of device-to-device
communication underlaying cellular communication,” in Proc. IEEE ICC, Dresden, Germany, Jun. 2009, pp. 1-5.
[90] C. H. Yu, K. Doppler, C. Ribeiro, and O. Tirkkonen, ”Resource sharing optimization for eviceto-
device communication underlaying cellular networks,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2752-2763, Aug. 2011.
[91] L. Popova, T. Herpel, W. H. Gerstacker, and W. Koch, ”Cooperative mobile-to-mobile file dissemination in cellular networks within a unified radio interface,” Int. J. Comput. Netw., vol. 52, no. 6, pp. 1153-1165, Apr. 2008.
[92] A. A. Khalek and Z. Dawy, ”Energy-efficient cooperative video distribution with statistical QoS
provisions over wireless networks,” IEEE Trans. Mobile Comput., vol. 11, no. 7, pp. 1223-1236, Jul. 2012.
[93] B. Xing, K. Seada, and N. Venkatasubramanian, ”An experimental study on Wi-Fi ad-hoc mode
for mobile device-to-device video delivery,” in Proc. IEEE INFOCOM, Rio de Janeiro, Brazil, Apr. 2009, pp. 1-6.
[94] L. Popova, T. Herpel, andW. Koch, ”Enhanced downlink capacity in UMTS supported by direct mobile-to-mobile data transfer,” in Proc. 6th Int. Conf. IFIP-TC6 Netw., Atlanta, GA, May 2007, pp. 522-534.
[95] H.-K. Lee, D. Kim, Y. Hwang, S. Min, and S.-L. Kim, ”Feasibility of Cognitive Machine-to- Machine Communication Using Cellular Bands”, IEEE Wireless Commun., vol. 20, no. 2, pp. 97-103, Apr. 2013.
[96] E. Hossain, D. Niyato, and Z. Han, ”Dynamic Spectrum Access and Management in Cognitive Radio Networks,” Cambridge University Press, 2009.
[97] Y. Zhang, R. Yu, S. Xie,W. Yao, Y. Xiao, and M. Guizani, ”Home M2M networks: architectures,
standards, and QoS improvement,” IEEE Commun. Mag., vol. 49, no. 4, pp. 44-52, 2011.
[98] Z.M. Fadlullah, M.M. Zubair, N. Kato, A. Takeuchi, N. Iwasaki, and Y. Nozaki, ”Toward ntelligent Machine-to-Machine Communications in Smart Grid,” IEEE Commun. Mag., vol. 49, no. 4, pp. 60-65, 2011.
[99] B.H. Lee and S.L. Kim, ”Mobility Control for Machine-to-Machine LTE Systems,” Wireless
Conference 2011-Sustainable Wireless Technologies (European Wireless), 11th European. VDE, pp. 1-5, 2011.
[100] C. Ho, and C. Y. Huang, ”Energy-Saving Massive Access Control and Resource Allocation Schemes for M2M Communications in OFDMA Cellular Networks,” IEEE Wireless Commun. Lett., vol. 1, no. 3, pp. 209-212, Jun. 2011.
[101] K. Zheng, F. Hu, W. Wang, W. Xiang, and M. Dohler, ”Radio Resource Allocation in LTEAdvanced
Cellular Networks with M2M Communications,” IEEE Commun. Mag., vol. 50, no. 7, pp. 184-192, Jul. 2012.
[102] 3GPP TS 36.321 V10.5.0, “Medium Access Control (MAC) Protocol Specification,” Mar. 2012.
[103] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution - From Theory to Practice, Wiley, 2009.
[104] T. Taleb and A. Kunz, ”Machine Type Communications in 3GPP Networks: Potential, Challenges,
and Solutions”, IEEE Commun. Mag. 50(3) (2012), pp. 178-184.
[105] M. Hasan, E. Hossain, and D. Niyato, ”Random Access for Machine-to-Machine Communication
in LTE-Advanced Networks: Issues and Approaches”, IEEE Commun. Mag., vol. 51, no. 6, pp. 86-93, Jun. 2013.
[106] J. Seo and V. Leung, ”Performance Modeling and Stability of Semi-Persistent Scheduling with
Initial Random Access in LTE”, IEEE Transactions on Wireless Communications, vol. 11, no. 12, pp. 4446-4456, Dec. 2012.
[107] J. Seo and V. Leung, ”Design and Analysis of Backoff Algorithms for Random Access Channels
in UMTS-LTE and IEEE 802.16 Systems”, IEEE Transactions on Vehicular Technology, Vol. 60, no. 8, pp. 3975-3989, Oct. 2011.
[108] R. Tyagi, F. Aurzada, K.-D. Lee, S. kim, and M. Reisslein, ”Impact of Retransmission Limit
on Preamble Contention in LTE-Advanced Network” IEEE Systems J., pp. 1-14, Oct. 2013.
[109] A. Lo, Y. W. Law, and M. Jacobsson, ”Enhanced LTE-Advanced Random-Access Mechanism for Massive Machine-to-Machine (M2M) Communications,” Proc. 27th Meeting of Wireless World Research Forum, Oct. 2011.
[110] M. Chen, J. Wan, S. Gonzalez, X. Liao, and V. Leung, ”A Survey of Recent Developments in
Home M2M Networks”, IEEE Commun Surveys & Tutorials, vol. 12, no. 1, pp. 98-114, Feb. 2014.
[111] P. Huang, L. Xiao, S. Soltani, M. Mutka, and N. Xi, ”The evolution of MAC protocols in
wireless sensor networks: A survey,” IEEE Commun. Surveys & Tutorials, vol. 15, no. 1, pp. 101-120, 2012.
[112] W. Ye, J. Heidemann, and D. Estrin, ”Medium access control with coordinated, adaptive sleeping
for wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 12, no. 3, pp. 493-506, Jun. 2004.
[113] B. Villaverde, R. Alberola, A. Jara, S. Fefor, S. Das, and D. Pesch, ”Service Discovery Protocols for Constrained Machine-to-Machine Communications,” IEEE Commun. Surveys & Tutorials,
vol. 16, no. 1, pp. 41-60, 2014.
[114] Z. Zhang, K. Long, J. Wang, and F. Dressler, ”On Swarm Intelligence Inspired Self-Organized
Networking: Its Bionic Mechanisms, Designing Principles and Optimization Approaches,”IEEE Commun. Surveys & Tutorials, vol. 16, no. 1, pp. 513-537, 2014.
[115] D. Wu and R. Negi, ”Effective capacity: A wireless link model for support of quality of service.”IEEE Trans. on Wireless Communications, vol. 2, no. 4, pp. 630-643, Jul. 2003.
[116] M. K. Simon and M. S. Alouini, ”Digital Communication over Fading Channels: A Unified Approach to Performance Analysis”, New York: Wiley, 2nd Ed., 2005.
[117] Lecture Slides on Class EE364b of Stanford Univ., S. Boyd, Ellipsoid Method. [Online]. Available: http://www.stanford.edu/class/ee364b/lectures.html
[118] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[119] R. Merris, Combinatorics. Wiley-Interscience, 2003.
[120] M. Tao, Y. Liang, and F. Zhang, ”Resource allocation for delay differentiated traffic in multiuser OFDM systems,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2190-2201, Jun. 2008.
[121] K. Seong, M. Mohseni, and J. M. Cioffi, ”Optimal resource allocation for OFDMA downlink
systems,” in Proc. IEEE ISIT, Seattle, WA, USA, pp. 1394-1398, 2006.
[122] Y. Liu, C. Yuen, J. Chen, and X. Cao, ”A scalable hybrid MAC protocol for massive M2M networks”, in Proc. of IEEE Wireless Commun. and Networking Conf. (WCNC), Shanghai, China, Apr. 2013.
[123] R. Tyagi, F. Aurzada, K.-D. Lee, S. Kim, and M. Reisslein, ”Impact of retransmission limit on
preamble contention in LTE-Advanced Network”, IEEE System Journal, pp. 1-14, Oct. 2013.
[124] A. Ksentini, Y. Hadjadj-Aoul, and T. Taleb, ”Cellular-based Machine-to-Machine: Overload
Control”, IEEE Network, vol. 26, no. 6, pp. 54-60, Nov. 2012.
[125] A. Lo, Y. W. Law, and M. Jacobsson, ”Enhanced LTE-Advanced Random-Access Mechanism for Massive Machine-to-Machine (M2M) Communications”, Proc. 27th Meeting of Wireless World Research Forum, Oct. 2011.
[126] N. Zhang, G. Kang, J. Wang, Y. Guo, and F. Labeau, ”Resource allocation in a new random access for M2M communications,” IEEE Commun. Lett., vol. 19, no. 5, pp. 843-846, May 2015.
[127] D. T.Wiriaatmadja and K.W. Choi, ”Hybrid random access and data transmission protocol for
machine-to-machine communications in cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 1, pp. 33-46, Jan. 2015.
[128] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000.
[129] H. Ekstrom, A. Furuskar, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist,
”Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag., vol. 44, no. 3, pp. 3845, Mar. 2006.
[130] 3rd Generation Partnership Project (3GPP); Requirements for Evolved UTRA (EUTRA) and Evolved UTRAN (E-UTRAN), http://www.3gpp.org/ftp/Specs/htmlinfo/25913.htm.
[131] 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved UTRA, http://www.3gpp.org/ftp/Specs/htmlinfo/
25814.htm.
[132] R. Rudershausen, ”Perfect Radio Communication Coding”, 2015.
[133] M.J.E. Golay, ”Complementary Sequences”, IRE Transactions on Information Theory, vo. 7, no. 2, pp. 82-87, Apr. 1961.
[134] H.-H. Chen, ”The Next Generation CDMA Technologies”, Wiley, 2007.
[135] U. Sorger, I. De Broeck, and M. Schnell, ”Interleaved FDMAA New Spread-Spectrum Multiple-Access Scheme,” Proc. IEEE ICC 98, Atlanta, GA, pp. 10131017, June 1998.
[136] I. Demirkol, F. Alagoz, H. Delic, C. Ersoy, Wireless sensor networks for intrusion detection:
packet traffic modeling, IEEE Communication Letters 10 (1) (2006) 22-24.
[137] J. Kim, J. Lee, J. Kim, and J. Yun, ”M2M Service Platforms: Survey, Issues, and Enabling
Technologies”, IEEE Commun Surveys & Tutorials, vol. 16, no. 1, pp. 61-76, Feb. 2014.
[138] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, ”A First Look at cellular Machine-to-
Mchine Traffic: Large Scale Measurement and Characterization,” in Proc. of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems, London, England, UK, 2012, pp. 65-76.
[139] V. Krylov, A. Logvinov, D. Ponomarev, EPC Object Code Mapping Service Software Architecture:
Web Approach, MERA Networks Publications, 2008.
[140] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ”A survey on sensor networks,”
IEEE Commun. Mag., vol. 40, no. 8, Aug. 2002. pp. 102-14.
[141] S. Ehsan and B. Hamdaoui, ”A Survey on Energy-Efficient Routing Techniques with QoS Assurances for Wireless Multimedia Sensor Networks,” IEEE Commun. Surveys & Tutorials, Vol. 14, No. 2, 2012, pp. 265-278.
[142] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, ”Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey,” IEEE Commun. Surveys & Tutorials, Vol. 15, No. 2, 2013, pp. 551-591.
[143] T. Watteyne, A. Molinaro, M. G. Richichi, and M. Dohler, ”From MANET To IETF ROLL Standardization: A Paradigm Shift in WSN Routing Protocols,” IEEE Commun. Surveys & Tutorials, Vol. 13, No. 4, 2011, pp. 688-707.
[144] R. Kumar, E. Kohler, M. Srivastava, Harbor, ”Software-based Memory Protection for Sensor
Nodes,” in: proceedings of IPSN 2007, Cambridge, MA, USA, April 2007.
[145] H. Krawczyk, M. Bellare, R. Canetti, ”HMAC: Keyed-Hashing for Message Authentication,” IETF RFC 2104, February 1997.
[146] R. Acharya and K. Asha, Data integrity and intrusion detection in wireless sensor networks, in: Proceedings of IEEE ICON 2008, New Delhi, India, December 2008.
[147] 3rd Generation Parnership Project (3GPP). (2007, May). Feasibility study on remote management of USIM application on M2M equipment. 3GPP Tech. Rep. 33.812, unpublished draft version 1.4.0.