簡易檢索 / 詳目顯示

研究生: 李芝瑩
Li, Jhih-Ying
論文名稱: 油輪單點繫泊之柔性立管配置設計分析及繫纜失效引致之影響
Analysis of Flexible Riser Configurations Design for Single Point Buoy Moored Tanker and the Impact of Mooring Failure
指導教授: 楊瑞源
Yang, Ray-Yeng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 單點繫泊系統柔性立管緩波型陡波型動力放大因子繫纜系統失效
外文關鍵詞: SPM, flexible riser, lazy wave, steep wave, DAF, mooring line failure
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於油輪大型化,港口無法容納大型油輪,故須透過海外卸油浮筒進行卸油,單點繫泊系統常作為海外卸油設施,提供油輪繫泊及進行卸油作業,海外卸油亦伴隨風險,若有漏油事件發生,將對生態及漁業造成衝擊。故本研究以高雄港外海卸油浮筒掛載柔性立管作為研究標的,運用ANSYS AQWA以及OrcaFlex等軟體進行模擬,在油輪單點繫泊卸油作業條件下,探討單點繫泊系統以及柔性立管之安全性,以及當繫纜故障導致斷裂失效後,對單點繫泊系統及柔性立管引致之影響。
    首先,建立緩波型(lazy wave)立管及陡波型(steep wave)立管,分別討論在風波流耦合作用下,對柔性立管曲率及張力之影響,評估其是否適用於高雄港外海海域。研究結果顯示,兩種配置之柔性立管在卸油作業條件下,張力與曲率皆在安全範圍內,雖然兩種配置之立管皆能在高雄港外海作業環境條件下生存,但在動力放大因子結果中,惟陡波型立管可有更好的適應能力,故在進一步繫纜失效分析中使用陡波型立管作為研究標的。
    在繫纜失效分析中,考量油輪不同裝卸情況下,探討不同風向及不同流向時,單點繫泊系統之影響及柔性立管之安全性,本研究規劃四種不同繫纜失效情境進行分析,搭配美國石油學會(API RP 2SK)錨鏈張力規範及中國港口技術規範之泊位水域範圍進行探討。研究結果顯示,當迎波方向一條錨鏈失效時,其餘錨鏈張力、油輪漂移範圍及立管張力曲率都在安全範圍之內,尚能繼續進行卸油作業;當迎波方向兩條錨鏈連續失效時,油輪漂移範圍超出泊位水域,與周圍船隻有碰撞危險,此時立管張力曲率也超出材料本身允許範圍,亦有漏油之風險;另外當一條大纜失效時,由於油輪漂移範圍變化大,雖未超出泊位水域,但須注意剩餘迎波方向之錨鏈張力上升狀況;當迎波方向一條錨鏈且一條大纜失效時,部分試次中迎波方向錨鏈張力超越80% MBS,不滿足規範之安全要求,可能有連續斷纜之虞。本文之研究成果將可作為外海油輪單點繫泊作業風險管控之參考依據。

    The purpose of this study is to examine the safety of the flexible riser attached to the single point mooring system in the Kaohsiung harbor offshore area. The study uses ANSYS AQWA and OrcaFlex to conduct numerical simulations, considering the effects of wind, wave, and current in different directions. The study analyzes the impact of tension and curvature of the flexible risers in various configurations, namely lazy wave and steep wave. Additionally, the study examines the safety of the mooring system under the wave, wind, and current forces in the event of mooring failure of the single point mooring system. It also discusses whether the allowable curvature and tension of the riser are exceeded, leading to oil spill pollution.
    The results show that both configurations of the risers can withstand the operating environment of the Kaohsiung harbor offshore area. However, the dynamic amplification factor shows that the steep wave riser is better suited for application in Kaohsiung harbor. Furthermore, in the event of anchor chain M1 and M2 failure, the berthing area of the tanker will be exceeded, and the flexible riser will also be damaged. To prevent the risk of oil spills, it is necessary to evacuate nearby ships promptly and suspend oil discharge.

    摘要 i 致謝 vi 目錄 vii 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 單點繫泊系統 2 1.2.2 懸垂式錨泊系統 2 1.2.3 泊位水域計算 4 1.2.4 柔性立管介紹 4 1.3 近期相關研究 12 1.4 研究章節 14 第二章 研究方法 15 2.1 ANSYS AQWA 15 2.1.1 勢流理論 15 2.1.2 三維勢流解 16 2.1.3 水動力計算理論 18 2.2 OrcaFlex 21 2.2.1座標系統介紹 21 2.2.2 波浪理論 22 2.2.3 動態分析 22 2.2.4 結構物受力計算 23 2.2.5 莫里森方程式( Morison’s equation ) 25 2.2.6 繫纜繩與立管計算 25 第三章 數值模擬 26 3.1模型建置 26 3.1.1 船體建模 26 3.1.2 浮筒規格 28 3.1.3 繫纜系統 28 3.1.4 柔性立管 29 3.2 環境條件 32 3.3 試次規劃 33 第四章 結果與討論 35 4.1 單一立管分析 35 4.1.1 準靜態分析 35 4.1.2 動態分析 39 4.1.3 動力放大因子 42 4.1.4 小結 43 4.2 繫纜失效分析 44 4.2.1錨鏈M1失效 44 4.2.2錨鏈M1、M2失效 56 4.2.3大纜L1失效 65 4.2.4大纜L1、錨鏈M1失效 78 4.2.5小結 90 第五章 結論與建議 91 5.1結論 91 5.2建議 92 參考文獻 93

    1. American Petroleum Institute. (2005). API RP 2SK:Design and Analysis of Stationkeeping Systems for Floating Structures.
    2. ANSYS. (2021) AQWA Theory Manual.
    3. Amaechi, C. V., Wang, F., & Ye, J. (2021). Mathematical modelling of bonded marine hoses for single point mooring (SPM) systems, with Catenary Anchor Leg Mooring (CALM) buoy application—A review. Journal of Marine Science and Engineering, 9(11), 1179.
    4. Amaechi, C. V., Chesterton, C., Butler, H. O., Wang, F., & Ye, J. (2021). Review on the design and mechanics of bonded marine hoses for Catenary Anchor Leg Mooring (CALM) buoys. Ocean Engineering, 242, 110062.
    5. Amaechi, C. V., Wang, F., Hou, X., & Ye, J. (2019). Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy. Ocean Engineering, 171, 429-442.
    6. API RP 17B. (1998). Recommended practice for flexible pipe.
    7. Drumond, G. P., Pasqualino, I. P., Pinheiro, B. C., & Estefen, S. F. (2018). Pipelines, risers and umbilicals failures: A literature review. Ocean Engineering, 148, 412-425.
    8. Hanonge, D., & Luppi, A. (2010). Special session: Advances in flexible riser technology: Challenges of flexible riser systems in shallow waters. In Offshore Technology Conference. OnePetro.
    9. Hoffman, D., Ismail, N. M., Nielsen, R., & Chandwani, R. (1991, May). The design of flexible marine risers in deep and shallow water. In Offshore Technology Conference. OnePetro.
    10. Karegar, S. (2013). Flexible riser global analysis for very shallow water. (Master's thesis, University of Stavanger, Norway).
    11. Leffler, W. L., Pattarozzi, R., & Sterling, G. (2003). Deepwater petroleum exploration & production: a nontechnical guide (Vol. 166). PennWell.
    12. Ruan, W., Shi, J., Sun, B., & Qi, K. (2021). Study on fatigue damage optimization mechanism of deepwater lazy wave risers based on multiple waveform serial arrangement. Ocean Engineering, 228, 108926.
    13. Orcina. (2022). Documentation for OrcaFlex (version 11.2a).
    14. Ribeiro, E. J., de Sousa, J. R., Ellwanger, G., & Lima, E. (2003). On the tension-compression behaviour of flexible risers. In The Thirteenth International Offshore and Polar Engineering Conference. OnePetro.
    15. Rutkowski, G. (2019). A comparison between conventional buoy mooring CBM, single point mooring SPM and single anchor loading SAL systems considering the hydro-meteorological condition limits for safe ship’s operation offshore. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 13(1), 187-195.
    16. SBM Offshore. (2013). SO10360 SYSTEM 42〞PLEM RELOCATION SUBSEA CONFIGURATION REPORT.
    17. Simonsen, A. (2014). Inspection and monitoring techniques for un-bonded flexible risers and pipelines (Master's thesis, University of Stavanger, Norway).
    18. Yang, R. Y., & Chiang, W. C. (2022). Dynamic motion response of an oil tanker moored with a single buoy under different mooring system failure scenarios. Ships and Offshore Structures, 1-14.
    19. Zhang, X., Ni, W., Sun, L., & Zhang, W. (2021). Experimental investigation of a shuttle tanker in irregular waves with hawser single point mooring system. Ships and Offshore Structures, 16(8), 838-851.
    20. 林維明(1977),「外海卸油浮筒工程概說」。
    21. 嚴愷(2002),海岸工程,海洋出版社,北京。
    22. 曹淑剛(2015),「浮筒單點系统缓波式柔性立管性能研究」,碩士論文,中國海洋大學。
    23. 港灣技術研究中心(2020),「108年國際商港風波潮流與特性分析」,交通部運輸研究所。
    24. 姜彣璋(2021),「油輪繫泊於浮筒之運動行為及繫纜失效影響研究」,碩士論文,國立成功大學水利及海洋工程研究所,臺南。
    25. 曹静、張恩勇(2021),深水海底管道和立管工程技術,上海科學技術出版社。
    26. 我們的島,油到小琉球|2021.6.22中油高雄大林外海油污事件(2021)。檢自https://ourisland.pts.org.tw/content/7976
    27. Continental AG, Offshore Product Catalogue GMPHOM 2009 Hoses (2014). Retrieved from https://www.continental.com/en/

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE