簡易檢索 / 詳目顯示

研究生: 張詩偉
Chang, Shih-Wei
論文名稱: 利用酸解芒蔗葉取得發酵糖的前處理效果與條件最適化之研究
Studies on Effect and Optimizing Condition for Saccharum-Miscanthus Leaves Pretreatment via Acid Hydrolysis
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 66
中文關鍵詞: 芒蔗泛纖維素前處理法濃酸前處理法酸水解
外文關鍵詞: Saccharum-Miscanthus, holocellulose, pretreatment, concentrated acid pretreatment, acid hydrolysis
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 芒蔗是一種芒草和甘蔗雜交育種而成的後裔,其葉子生長快速且泛纖維素含量高達72.21%,是具有發展潛力的生質原料。
    本研究為探討酸水解芒蔗葉之可分解效果,利用高濃度之酸進行前處理方式,處理芒蔗葉,再以稀酸水解的方式得到還原糖。結果指出,於固液比1:5、30oC條件下,以70wt.%濃硫酸浸泡芒蔗葉1小時,再加水稀釋至5wt.%稀硫酸,在固液比1:70、1.2大氣壓力、121oC的條件下水解1小時,可得到最高產率0.487g/g,泛纖維素轉化率為68.8%。然而,在大量之製程上,過高的酸用量,其酸鹼中和或稀釋所需花費的成本,使得此操作不合經濟可行性。
    本研究提出,先在固液比1:5、30oC條件下,以4wt.%氫氧化鈉溶液浸泡芒蔗葉6小時。將浸泡過的芒蔗葉沖洗乾淨後,再浸泡在固液比1:5、70oC的20wt.%硫酸,在1.2大氣壓力、121oC條件下酸水解,可得到產率0.402g/g之總還原糖,泛纖維素轉化率55.7%。

    The leaves of Saccharum-Miscanthus, which is a hybrid of sugarcane and miscanthus, provide a good biomaterial due to its high holocellulose contain and production. In the present study, dilute acid hydrolysis process is applied to hydrolyze cellulose and hemicellulose to produce reducing sugars such as glucose and xylose.
    After process optimization, we obtained that under the condition of 30oC, with the leaf size of 3-5mm soaked in 70wt.% H2SO4 solution for 1hr followed by 5wt.% H2SO4 solution hydrolysis under 121oC, 1.2atm for 1hr, the highest total reducing sugar yield was 0.487g reducing sugar/g raw-material-added.
    To cost down and make it economic viable, we developed a process that using two-stage pretreatment. In the developed process, Saccharum- Miscanthus leaves were first soaked in 30oC, 4wt.%NaOH solution for 6hr, then soaked in 70oC, 20wt.% H2SO4 for 1hr. The two-stage pretreated leaves could give total reducing sugar yield of 0.402g reducing sugar/g raw-material, followed by 5wt.% H2SO4 hydrolysis at 121oC for 1hr.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 3 第二章 文獻回顧 5 2-1芒蔗 5 2-2木質纖維素前處理 6 2-2-1木質纖維素 6 2-2-2木質纖維素前處理 9 2-2-3物理前處理 11 2-2-4化學前處理 13 2-2-5物理-化學前處理 15 2-2-6生物前處理 16 2-2-7結合型前處理 17 第三章 實驗材料與方法 18 3-1實驗材料與儀器 18 3-1-1實驗材料 18 3-1-2實驗設備與儀器 19 3-2實驗方法 20 3-2-1實驗流程圖 20 3-2-2原料成分分析 21 3-2-3機械粉碎法前處理 22 3-2-4前處理 23 3-2-5酸水解 24 3-3分析方法 25 3-3-1還原糖分析 25 3-3-2實驗算式 26 第四章 結果與討論 27 4-1 原料成分分析及比較 27 4-2 芒蔗葉水解之最適化條件探討 30 4-2-1 芒蔗葉尺寸對於還原糖產率的影響 30 4-2-2 酸的種類與濃度對於還原糖產率的影響 32 4-2-3 水解時間對於還原糖產率的影響 34 4-3 不同前處理方式之比較 36 4-3-1 水熱前處理 36 4-3-2 稀酸前處理 38 4-3-3 濃酸前處理 40 4-3-4 鹼前處理 43 4-3-5 不同前處理方式之比較 45 4-4 濃酸前處理法之最適化探討 47 4-4-1 降低稀釋比例對前處理效果之影響 47 4-4-2 改變濃硫酸固液比對前處理效果之影響 49 4-4-3 濃硫酸回收再利用之效率及影響 51 4-5 結合酸、鹼前處理與酸回收技術探討 54 第五章 結論與未來展望 57 5-1結論 57 5-2未來展望 59 參考文獻 60 自述 66 表目錄 表2-1 常見農業廢棄物之木質纖維素組成 8 表2-2 不同前處理方式對木質纖維素成分及結構的效果比較 10 表4-1 芒蔗葉成分之分析 28 表4-2 不同木質纖維素原料之泛纖維素比較 29 表4-3 不同尺寸芒蔗葉對於總還原糖產率之影響 31 表4-4 不同濃度的硫酸及鹽酸水解芒蔗葉之總還原糖產率比較 33 表4-5 不同水解時間下,芒蔗葉得到葡萄糖、木糖、總還原糖產率之比較 34 表4-6 不同反應時間下水熱前處理對水解芒蔗葉得到還原糖之效果 37 表4-7 不同反應時間下高溫稀酸前處理對水解芒蔗葉得到還原糖之效果 39 表4-8 不同反應時間下低溫稀酸前處理對水解芒蔗葉得到還原糖之效果 39 表4-9利用30%硫酸液浸泡芒蔗葉不同時間下對水解芒蔗葉得到還原糖之效果 41 表4-10利用50%硫酸液浸泡芒蔗葉不同時間下對水解芒蔗葉得到還原糖之效果 42 表4-11利用70%硫酸液浸泡芒蔗葉不同時間下對水解芒蔗葉得到還原糖之效果 42 表4-12利用4%氫氧化鈉溶液浸泡芒蔗葉不同時間下對水解芒蔗葉得到還原糖 44 表4-13利用7%氫氧化鈉浸泡芒蔗葉不同時間下對水解芒蔗葉得到還原糖之效果 44 表4-14 利用10%氫氧化鈉浸泡芒蔗葉不同時間下對水解芒蔗葉得到還原糖之效果 45 表4-15 不同前處理方式對於芒蔗葉酸水解之效果 46 表4-16 不同水解液濃度對於芒蔗葉濃酸前處理後酸水解之影響 48 表4-17 不同固液比對於濃酸前處理芒蔗葉後酸水解之影響 50 表4-18 透過回收濃硫酸前處理芒蔗葉後分別水解之總還原糖產率 52 表4-19 透過回收濃硫酸前處理芒蔗葉後集中水解之總還原糖產率 53 表4-20 利用20%硫酸液浸泡芒蔗葉原料不同時間之前處理效果 55 表4-21 結合鹼前處理及酸前處理後水解之總還原糖產率比較 56 圖目錄 圖2-1木質纖維素結構示意圖 6 圖2-2 木質素中常見的三種單體 7 圖2-3 前處理示意圖 10 圖2-4 利用切碎及敲碎處理不同原料之耗能趨勢 12 圖3-1 實驗流程圖 20 圖4-1 芒蔗葉組成成分示意圖 28 圖4-2 不同前處理方式得到最高總還原糖產率之比較 46

    Alvira, P., E. Tomás-Pejó, M. Ballesteros and M. J. Negro (2010). "Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review." Bioresource Technology 101: 4851-4861.

    Bennett, E. (1947). "Preparation of Holocellulose from Nonwoody Plant Material." Analytical Chemistry 3: 215.

    Bernardo, C. V. J., B. S. Dien, K. C. Ting and V. Singh (2011). "Influence of Feedstock Particle Size on Lignocellulose Conversion—A Review." Applied Biochemistry and Biotechnology 164(8): 1405-1421.

    Boopathy, R. (1998). "Biological treatment of swine waste using anaerobic baffled reactors." Bioresource Technology 64: 1-6.

    Cadoche, L. and G. D. Lbpez (1989). "Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes." Biological Wastes 30: 153-157.

    Cheung, S. W. and B. C. Anderson (1997). "Laboratory investigation of ethanol production from municipal primary wastewater." Bioresource Technology 59: 81-96.

    Clark, T. A. and K. L. Mackie (1987). "Sream explosion of the soft-wood Pinus radiate with sulphur dioxide addition." Journal of Wood Chemistry and Technology 7(3): 373-403.

    Dyk, J. S. V. and B. I. Pletschke (2012). "A review of lignocellulose bioconversion using enzymatic hydrolysis and synergisticcooperation between enzymes—Factors affecting enzymes, conversion and synergy." Biotechnology Advances 30: 1458-1480.

    Gírio, F. M., C. Fonseca, F. Carvalheiro, L.C. Duarte, S. Marques and R. Bogel-Łukasik (2010). "Hemicelluloses for fuel ethanol: A review." Bioresource Technology 101(13): 4775-4800.

    Guo, B., Y. Zhang, S.-J. Ha, Y.-S. Jin and E. Morgenroth (2012). "Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production." Bioresource Technology 110: 278-287.

    Harmsen, P., W. Huijgen, L. Bermudez and R. Bakker (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass

    Hsu, T. A. (1996). Pretreatment of Biomass. In: Wyman. Handbook on Bioethanol, Production and Utilization. Taylor & Francis, Washington, DC.

    Iroba, K. L., L. G. Tabila, T. Dumonceaux and O.-D. Baik (2013). "Effect of alkaline pretreatment on chemical composition of lignocellulosic biomass using radio frequency heating." Biosystems Engineering 116(4): 385-398.

    Janga, K. K., M.-B. Hägg and S. T. Moe (2012). "Influence of Acid Concentration, Temperature, And Time on Decrystallization In Two-Stage Concentrated Sulfuric Acid Hydrolysis of Pinewood And Aspenwood: A Statistical Approach." bioresources 7(1): 391-411.

    Jensen, J. R., J. E. Morinelly, K. R. Gossen, M. J. Brodeur-Campbell and D. R. Shonnard (2010). "Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass." Bioresource Technology 101: 2317 - 2325.

    Kadam, K. L., L. H. Forrest and W. A. Jacobson (2000). "Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects." Biomass and Bioenergy 18(5): 369-389.

    Lédé, J. (2012). "Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose." Journal of Analytical and Applied Pyrolysis 94: 17-32.

    Liao, W., Y. Liu, C. Liu, Z. Wen and S. Chen (2006). "Acid hydrolysis of fibers from dairy manure." Bioresource Technology 97: 1687-1695.

    Meinita, M. D. N., Y.-K. Hong and G.-T. Jeong (2012). "Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii(cottonii)." Bioprocess Biosyst Eng 35: 123-128.

    Millett, M. A., A. J. Baker and L. D. Satter (1976). "Physical and chemical pretreatments for enhancing cellulose saccharification." Biotechnol. Bioeng. Symp. 6: 125-153.

    Moe, S. T., K. K. Janga, T. Hertzberg, M.-B. Hägg, K. Øyaas and N. Dyrset (2012). "Saccharification of lignocellulosic biomass for biofuel and biorefinery applications-A renaissance for the concentrated acid hydrolysis? ." Energy Procedi 20: 50-58.

    Monavari, S., M. Galbe and G. Zacchi (2009). "Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production." Bioresource Technology 100: 6312-6316.

    Mood, S. H., A. H. Golfeshan, M. Tabatabaei, G. S. Jouzani, G. H. Naja, M. Gholami and M. Ardjmand (2013). "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment." Renewable and Sustainable Energy Reviews 27: 77-93.

    Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple and M. Ladisch (2005). "Features of promising technologies for pretreatment of lignocellulosic biomass." Bioresource Technology 96: 673-686.

    Moutta, R. O., A. K. Chandel, R. C. L. B. Rodrigues, M. B. Silva, G. J. M. Rocha and S. S. Silva (2012). "Statistical Optimization of Sugarcane Leaves Straw Hydrolysis into Simple Sugars by Dilute Sulfuric Acid Catalyzed Process." Sugar Tech 14(1).

    Overend, R. P., E. Chornet and J. A. Gascoigne (1987). "Fractionation of lignocellulosics by steam-aqueous pretreatments." Philos. Trans. R. Soc. Lond.A. 321: 523-536.

    Reshamwala, S., B. T. Shawky and B. E. Dale (1995). "Ethanol production from enzymatic hydrolysates of AFEX-treated coastal Bermuda grass and switchgrass." Appl. Biochem. Biotechnol. 51/52: 43-55.

    Saha., B. C. (2003). "Hemicellulose bioconversion." J Ind Microbiol Biotechnol 30: 279-291.

    Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. Crocker (2011). Determination of Structural Carbohydrates and Lignin in Biomass, National Renewable Energy Laboratory.

    Sun, Y. and J. Cheng (2002). "Hydrolysis of lignocellulosic materials for ethanol production: a review." Bioresource Technology 83: 1-11.

    Taherzadeh, M. J. and K. Karimi (2007). "Acid-based Hydrolysis Processes For Ethanol From Lignocellulosic Materials: A Review." bioresources 2(3): 472-479.

    Taherzadeh, M. J. and K. Karimi (2008). "Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review." bioresources 2(3): 472-499.

    Taherzadeh, M. J. and K. Karimi (2008). "Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review " International Journal of Molecular Sciences 9: 1621-1651.

    Tengerdy, R. P. and G. Szakacs (2003). "Bioconversion of lignocellulose in solid substrate fermentation." Biochemical Engineering Journal 13: 169-179.

    Xiang, Q., Y. Y. Lee and R. Torget (2004). "Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass." Appl. Biochem. Biotechnol 113-116: 1127-1138.

    Yanga, L., J. Caoa, Y. Jina, H.-m. Changb, H. Jameelb, R. Phillipsb and Z. Li (2012). "Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw." Bioresource Technology 124: 283-291.

    Yu, J. and H. Stahl (2008). "Microbial utilization and biopolyester synthesis of bagasse hydrolysates." Bioresource Technology 99: 8042-8048.

    能源統計手冊 (2013). 行政部能源局.

    張緯立 (2012). 以Pseudomonas aeruginosa S2利用芒草水解液之還原糖發酵生產界面活性劑. 化學工程學系, 國立成功大學. 碩士論文.

    陳主得 (1991). 白條病. 台灣甘蔗病蟲鼠害圖說. 中華民國蔗糖技術學會, 台灣糖業研究所編.

    陳燿煌 (1993). 蔗芒屬間雜種(Saccharum-Miscanthus)高貴化遺傳育種之研究. 農學院農藝學系, 國立臺灣大學. 博士論文.

    蘇沂婷 (2011). 台糖蔗種豐富 吸引國際生質能源研究團隊來訪. 台糖通訊1998期.

    下載圖示 校內:2015-02-14公開
    校外:2015-02-14公開
    QR CODE