簡易檢索 / 詳目顯示

研究生: 蘇益豐
Su, Yih-Feng
論文名稱: 應用有限時間熱力學與可用能方法於冷凍循環系統之研究
Application of Finite-Time Thermodynamics and Exergy Method to Refrigeration Systems
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 128
中文關鍵詞: 冷凍循環不可逆最佳化可用能效率
外文關鍵詞: optimization, refrigeration cycle, irreversible, exergetic efficiency
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
      結合有限時間熱力學理論與可用能分析觀念的可用能效率最佳化方法被應用到數個冷凍循環系統,包含不可逆卡諾冷凍循環系統、不可逆布累登冷凍循環系統、不可逆中間冷卻冷凍循環系統以及二級不可逆併合冷凍循環系統。在分析中考慮的多重不可逆性包含熱庫與循環工作流體間有限的熱傳遞率、循環工作流體的內部損耗和熱庫之間的熱漏。定義為可用能輸出率與可用能輸入率的比值的可用能效率被提出作為最佳化的目標函數。可用能效率最佳化即將此目標函數求取最大值。這些最大可用能效率皆以解析的方法獲得決定。在最大可用能效率情況下,系統的相關最佳參數值亦皆可隨之求出。這些系統的參數都可在評估這些冷凍循環系統性能時,當作為有效而重要的設計準則。而一些系統的設計參數對此最大可用能效率之影響亦在文中加以討論。文中亦說明使用可用能效率作為目標函數的合適性。此外,在不可逆卡諾冷凍循環系統和不可逆布累登冷凍循環系統的研究中,針對一個固定總熱導率於高、低溫側熱交換器的配置問題,亦以數值方法加以討論,並獲得最佳配置之結果。

    Abstract
     Exergetic efficiency optimization that combines finite-time thermodynamics theory and exergy concept has been applied to an irreversible Carnot refrigeration system, an irreversible Brayton refrigeration system, an irreversible inter-cooled refrigeration system and a two-stage irreversible combined refrigeration system. Multi- irreversiblities considered in these systems include finite rate heat transfer, internal dissipation of the working fluid and heat leak between heat reservoirs. Exergetic efficiency defined as the ratio of rate of exergy output to rate of exergy input of the system is proposed as the objective function to be optimized. The goal of exergetic efficiency optimization is to maximize the objective function. These maximum values of the exergetic efficiency can be determined analytically. The corresponding optimum values of parameters of these systems are obtained simultaneously. These parameters of the system can be effective and important design criteria while evaluating the performance of these refrigeration systems. The influences of design parameters of the system on the maximum exergetic efficiency are discussed. The appropriation of using exergetic efficiency as objective function is discussed. Moreover, in the research of irreversible Carnot and Brayton refrigeration systems, the allocation of a fixed total thermal conductance between the two heat exchangers is discussed using numerical calculation. The results of optimum allocation are also obtained.

    目 錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 符號說明 XV 第一章 緒論 1 1-1 研究背景與目的 1 1-2 文獻回顧 3 1-3 本文架構 6 第二章 有限時間熱力學與可用能分析的基礎 8 2-1有限時間熱力學的基礎 8 2-2可用能分析的基礎 10 2-3有限時間熱力學與可用能分析的整合 13 第三章 多重不可逆性卡諾冷凍循環系統之可用能效率最佳化 19 3-1 前言 19 3-2 不可逆卡諾冷凍循環系統之理論模型 20 3-3 可用能效率最佳化 23 3-4 結果與討論 27 第四章 不可逆布累登冷凍循環系統之可用能效率最佳化 44 4-1前言 44 4-2不可逆布累登冷凍循環系統之理論模型 44 4-3 可用能效率最佳化 49 4-4 結果與討論 53 第五章 可用能方法於不可逆中間冷卻冷凍循環系統之應用 69 5-1前言 69 5-2不可逆中間冷卻冷凍循環系統之理論模型 70 5-3 可用能效率最佳化 73 5-4 結果與討論 76 第六章 可用能方法於二級不可逆併合冷凍循環系統之應用 89 6-1前言 89 6-2二級不可逆併合冷凍循環系統之理論模型 90 6-3 可用能效率最佳化 94 6-4 結果與討論 98 第七章 結論 113 7-1綜合結論 113 7-2未來的研究發展方向與建議 116 參考文獻 118 自述 128

    參考文獻
    Ahlborn, B. and Barnard A.J., "Efficiency reduction of heat engines due to power extraction," Am. J. Phy., Vol.58, No.5, pp. 498-499,1990.
    Andresen, B., Berry, R.S. and Rubin, M.H., "Availability for finite-time processes --- general theory and a model," J. Phys. Chem. Vol.87, No.15, pp. 2704-2713, 1983.
    Angulo-Brown, F., "An ecological optimization criterion for finite-time heat engines," J. Appl. Phys. ,Vol.69, No.11, pp. 7465-7469, 1991.
    Bejan, A. Entropy Generation through Heat and Fluid Flow, Wiley, New York, 1982.
    Bejan, A., Advanced Engineering Thermodynamics, Wiley, New York, 1988.
    Bejan, A., "Theory of heat transfer-irreversible refrigeration plants," Int. J. Heat Mass Transfer, Vol.32 No.9, pp. 1631-1639, 1989.
    Bejan, A., Entropy Generation Minimization, CRC Press, Boca Raton FL, 1996a.
    Bejan, A. Tsatsaronis, G. and Moran, M., Thermal Design and Optimization, Wiley, New York, 1996b.
    Bejan, A., "Entropy generation minimization: the new thermodynamics of finite-size devices and finite time processes," J. Appl. Phys., Vol.79, pp. 1191-1218, 1996c.
    Berry, R.S. Kazakov, V.A., Sieniutycz, S., Szwast, Z. and Tsirlin, A.M., Thermodynamic Optimization of Finite Time Processes, Wiley, Chichester, p.471, 1999.
    Carnot, S., Reflections on the Motive Power of Fire, Bachelier, Paris, 1824.
    Chambadal, P., Les Centrales Nucleaires, Armand Colin, Paris, pp.41-58, 1957.
    Chambadal, P., Evolution et Applications du Concept d'Entropie, Dunod, Paris, 1963.
    Chen, J. and Yan, Z., "Optimal performance of an endoreversible combined refrigeration cycle," J. Appl. Phys., Vol.63, No.10, pp.4795-4798, 1988.
    Chen, J. and Yan, Z., "The relation between optimal efficiency and power output for a Carnot engine with finite compression ratio," J. Xiamen Univers., Vol.28, No.3, pp.255-260, 1989. ( in Chinese )
    Chen, J. and Yan, Z. "Optimal performance of an endoreversible combined refrigeration cycle," J. Appl. Phys, Vol74, No.4, p.p.2153-2158, 1993.
    Chen, J., "The maximum power output and maximum efficiency of an irreversible Carnot heat engine," J. Phys. D: Appl. Phys., Vol.27. pp.1144-1149, 1994.
    Chen, J. and Wu, C., "Optimization of a two-stage combined refrigeration system," Energy Convers. Mgmt., Vol.37, No.3, pp.353-358, 1996.
    Chen, J., "Performance characteristics of a two-stage irreversible combined refrigeration system at maximum coefficient of performance," Energy Convers. Mamt., Vol.40, p.p. 1939-1948, 1999.
    Chen, C.K. and Su, Y.F., "Exergetic efficiency optimization for an irreversible Brayton refrigeration cycle," Int. J. Thermal Sci., Vol.44, pp. 303-310, 2005.
    Chen, L., Sun, F. and Chen, W., "The relation between optimal efficiency and profit rate of a Carnot engine," J. Engng. Thermal Energy Pow., Vol.6, No.4, pp. 237-240, 1991a. ( in Chinese )
    Chen, L., Sun, F. and Chen, W., "Finite time exergoeconomic performance bound and optimization criteria for two-heat-reservoir heat engines," Chinese Science Bull., Vol.36, No.3, pp. 233-235, 1991b. ( in Chinese )
    Chen, L., Sun, F. and Chen, W., "Finite time exergoeconomic performance bound and optimization criteria for two-heat-reservoir refrigerators," Chinese Science Bull., Vol.36, No.2, pp. 156-157, 1991c. ( in Chinese )
    Chen, L., Sun, F. and Chen, W., "Ecological optimization criteria for a Carnot refrigerator," Nature J., Vol.15, No.8, P.633, 1992a. ( in Chinese )
    Chen, L., Sun, F. and Chen, W., "The influence of heat leak on the COP versus cooling load characteristics of refrigerators," Cryogenics Superconductor, Vol.20, No.4, pp. 7-14, 1992b. ( in Chinese )
    Chen, L., Sun, F. and Chen, W., "Optimization of the specific rate of refrigeration in combined refrigeration cycles," Energy, Vol.20, pp.1049-1053, 1995a.
    Chen, L. and Sun, F., "The maximum COP bound of an irreversible Carnot refrigerator," Sci. Tech. Bull., Vol.11, No.2, p.128, 1995b.
    Chen, L., Sun, F., Wu, C. and Kiang, R. L., "A generalized model of a real refrigerator and its performance," Appl. Thermal Engng., Vol.17, No.4, pp. 401-412, 1997a.
    Chen, L., Wu, C. and Sun, F., "Steady flow combined refrigeration cycle performance with heat leak," Appl. Thermal Engng., Vol.17, No.7, pp.639-645, 1997b.
    Chen, L., Finite time thermodynamic analysis of irreversible processes and cycles, Ph. D. Thesis, Navel Academy of Engineering, 1997c.
    Chen, L., Wu, C. and Sun, F., "Cooling load versus COP characteristics for an irreversible air refrigeration cycle," Energy Convers. Mgmt., Vol.39, pp. 117-125, 1998a.
    Chen L., Sun, F., Ni, N. and Wu, C., "Optimal configuration of a class of two-heat reservoir refrigeration cycles," Energy Covers. Mgmt., Vol.39, pp. 767-773, 1998b.
    Chen, L., Wu, C. and Sun, F., "Effect of heat transfer law on the finite time exergoeconomic performance of a Carnot refrigerator," Exergy, Vol.1, No.4, pp. 295-302, 2001a.
    Chen, L., Zhou, S., Sun, F. and Wu, C., "Performance of heat-transfer irreversible regenerated Brayton refrigerators," J. Phys. D: Appl. Phys., Vol.34, pp. 830-837, 2001b.
    Chen, L. and Chen, J. (eds.), Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Sci. Publishing, New York, 2004.
    Chen, W., Sun, F. and Chen, L., "Finite time thermodynamic criteria for selecting parameters of refrigerating and heat pumping cycles between heat reservoirs," Chinese Sci. Bull., Vol.35, No.19, pp. 1670-1672, 1990. ( in Chinese )
    Cheng, C.Y. and Chen, C.K., "Power optimization of an irreversible Brayton heat engine," Energy Sources, Vol.19, pp. 461-474, 1997a.
    Cheng, C.Y. and Chen, C.K., "The ecological optimization of an irreversible Carnot heat engine," J. Phys. D: Appl. Phys., Vol.30, pp. 1602-1609, 1997b.
    Cheng, C.Y. and Chen, C.K., "Ecological optimization of an endoreversible Brayton cycle," Energy Covers. Mgmt., Vol.39, pp. 33-44, 1998a.
    Cheng, C.Y. and Chen, C.K., "Efficiency optimizations of an irreversible Brayton heat engine," Tran. ASME, J. Energy Resour. Technol., Vol.120, pp.143-148, 1998b.
    Cheng, C.Y. and Chen, C.K., "Ecological optimization of an irreversible Brayton heat engine," J. Phys. D: Appl. Phys., Vol.32, pp. 1-8, 1999.
    Chiou, J.S., Liu, C.J. and Chen, C.K., "The performance of an irreversible Carnot refrigeration cycle," J. Phys. D: Appl. Phys., Vol.28, pp. 1314-1318, 1995.
    Curzon, F.L. and Ahlborn, B., "Efficiency of a Carnot engine at maximum power output," Am. J. Phys., Vol.43, No.1, pp. 22-24, 1975.
    De Vos, A., "Endoreversible thermodynamics," Energy Covers. Mgmt., Vol.36, No.1, pp. 1-5, 1995.
    De Vos, A., "Endoreversible economics," Energy Convers. Mgmt., Vol.38, No.4, pp. 311-317, 1997.
    El-Wakil, M.M., Nuclear Power Engineering, McGraw-Hill, New York, 1962.
    El-Wakil, M.M., Nuclear Energy Conversion, Int. Textbook Company, Scranton, Pa, 1971.
    Goktun, S., "Coefficient of performance for an irreversible combined refrigeration cycle," Energy, Vol.21, pp. 721-724, 1996.
    Goktun, S., "Optimal performance of an irreversible refrigerator with three heat sources," Energy, Vol.22, pp. 27-31, 1997.
    Goth, Y., "COP and R of a Carnot refrigerator at maximum ER," Nature J., Vol.7, No.1, pp. 73-74, 1984. ( in Chinese )
    Hoffmann, K.H., Burzler, J.M. and Schubert, S., "Endoreversible thermodynamics," J. Non-Equilib. Thermodyn., Vol.22, pp. 311-355, 1997.
    Huang, Y.C., Hung, C.I. and Chen, C.K., "An ecological exergy analysis for an irreversible Brayton engine with an external heat source," Proc. Instn. Mech. Engrs. A: J. Power and Energy, Vol.214, pp. 413-421, 2000.
    Ibrahim, O.M., Klein, S.A. and Mitchell, J.W., "Optimum power cycles for specified boundary conditions," Trans. ASME, J. Engng for Gas Turbines and Power, Vol.113, pp. 514-521, 1991.
    Ibrabim, O.M., Klein, S.A. and Mitchell, J.W., "Effects of irreversibility and economics on the performance of a heat engine," Trans. ASME, J. Sol. Energy. Engng., Vol.114, No.4, pp. 267-271, 1992.
    Kays, W.M. and London, A.L., Compact Heat Exchangers, McGraw-Hill, New York, 1984.
    Klein S.A. and Reindl, D.T., "The relationship of optimum heat exchanger allocation and minimum entropy generation rate for refrigeration cycles," Trans. ASME, J. Energy Resour. Technol., Vol.120, pp. 172-178, 1998.
    Kotas, T.J., The Exergy Method of Thermal Plant Analysis, Krieger, Melbourne F.L., 1995.
    Leff, H.S. and Teeter, W.D., "EER, COP, and 2nd law efficiency for air-conditioners," Am. J. Phys., Vol.46, No.1, pp. 19-22, 1978.
    Lin, G. and Yan, Z., "Optimal operating temperature of the collector of an irreversible solar-driven refrigerator," J. Phys. D: Appl. Phys., Vol.32, pp. 94-98, 1999.
    Luo, J., Chen, L., Sun, F. and Wu, C., "Optimum allocation of heat exchanger inventory of irreversible air refrigeration cycles," Physica Scripta, Vol.65, pp. 410-415, 2002.
    Moran, M.J. and Shapiro, H.N., Fundamentals of Engineering Thermodynamics, Wiley, New York, 2000.
    Novikov I.I., "The efficiency of atomic power stations (A review )," Atommaya Energiya, Vol.3, No.11, p.409, 1957.
    Novikov I.I. and Voskresenskii, K.D., Thermodynamics and Heat Transfer, Atomizdat, Moscow, 1977. ( in Russian )
    Rozonoer, L. I. and Tsirlin, A.M. Optimal control of thermodynamic processes I, II and III, Avtomat. Telemekh, (1) pp. 70-79, (2) pp. 88-101, (3) pp. 50-64, 1983.
    Rubin, M. H., "Optimal configuration of a class of irreversible heat engines," I. Phys. Rev. A, Vol.19, No.3, pp. 1272-1276, 1979.
    Sahin, B., Kodal, A and Yavuz, H., "Maximum power density analysis of an endoreversible Carnot heat engine," Energy, Vol.21, pp. 1219-1225,1996.
    Sahin, B., Kodal, A., Ekmekci, I. and Yilmaz, T., "Exergy optimization for an endoreversible cogeneration cycle," Energy, Vol.22, pp. 551-557, 1997.
    Salamon, P. and Nitzan, A., "Finite time optimizations of a Newton's law Carnot cycle," J. Chem. Phys., Vol.74, No.6, pp. 3546-3560, 1981.
    Spence R.D. and Harrision, M.J., "Speed dependence of the efficiency of heat engines," Am. J. Phys., Vol.53, No.9, pp. 890-893, 1985.
    Sun, F., Chen, L. and Chen, W., "Finite time thermodynamic analysis and evaluation for a heat engine with steady-state energy conversion between two heat reservoirs," J. Engng. Thermal Enrgy Pow., Vol.4, No.2, pp. 1-6, 1989. ( in Chinese )
    Sun, F., Chen, W. and Chen, L., "An analysis of the holographic spectrum and selection of the optimum parameters for reverse endoreversible Carnot cycle," J. Naval Acad. Engng. Vol.2, pp. 40-45, 1990. ( in Chinese )
    Sun, F., Chen, L. and Chen, W., "The efficiency and profit holographic spectrum of a two-heat-reservoir heat engine," Trans. Chinese Soc. Internal Combustion Engines, Vol.9, No.3, pp. 286-287, 1991. ( in Chinese )
    Velasco, S., Roco, J.M.M., Medina, A. and Calvo Hernandez, A., "Irreversible refrigerators under per-unit-time coefficient of performance optimization," Appl. Phys. Letters, Vol.71, pp. 1130-1132, 1997.
    Vukalovich, M.P. and Novikov, I.I., Thermodynamics, Mashinostroenie, Moscow, 1972. ( in Russian )
    Wu. C., Chen, L. and Sun, F., "Optimization of steady flow refrigeration eycles," Int. J. Ambient Energy, Vol.17, pp. 199-206, 1996.
    Wu, C., Chen, L. and Chen, J., Recent Advances in Finite-Time Thermodynamics, Nova Sci. Publishers, New York, 1999.
    Wylen G.J.V., Sonntag, R.E. and Borgnakke, C., Fundamentals of Classical Thermodynamics, Wiley, New York, 1993.
    Yan, Z., "The optimal relation between COP and cooling load of a Carnot refrigerator," Physics, Vol.13, No.12, pp. 768-770, 1984. ( in Chinese )
    Yan, Z. and Chen, J., "A class of irreversible Carnot refrigeration cycles with a general heat transfer law," J. Phys. D: Appl. Phys., Vol.23, pp. 136-141, 1990
    Yan, Z. and Chen, L., "Optimization of the rate of exergy output for an endoreversible Carnot refrigerator," J. Phys. D: Appl. Phys., Vol.29, pp. 3017-3021, 1996.
    Yan, Z. and Lin, G., "Ecological optimization criterion for an irreversible three-heat-source refrigerator," Appl. Energy, Vol.66, pp. 213-224, 2000.
    Zhou, S., Chen, L., Sun, F. and Wu, C., "Cooling load density analysis and optimization for an endoreversible air refrigerator," Open System & Information Dynamics, Vol.8, pp. 147-155, 2001.
    Zhou, S., Chen, L., Sun, F. and Wu, C., "Cooling load density characteristics of an endoreversible variable-temperature heat reservoir air refrigerator," Int. J. Energy Research, Vol.26, pp. 881-892, 2002a.
    Zhou, S., Chen, L., Sun, F. and Wu, C., "Cooloing load density optimization of an irreversible simple Brayton refrigerator," Open Systems & Information Dynamics, Vol.9, pp. 325-337, 2002b
    Zhou S., Chen, L., Sun, F. and Wu. C., "Cooling load density optimization for a regenerated air refrigerator," Appl. Energy, Vol.78, pp. 315-328, 2004
    李魁鵬,「中間冷卻式冷凍循環系統之有限時間熱力分析」,國立成功大學碩士論文,1995。
    黃玉枝,「燃氣渦輪機汽電共生系統之可用能和經濟學分析」,國立成功大學博士論文,1999。
    劉建志,「冷凍循環有限時間熱力分析」,國立成功大學碩士論文,1994。
    鄭慶陽,「有限時間熱力學在熱力循環上之應用」,國立成功大學博士論文,1996。

    下載圖示 校內:立即公開
    校外:2005-08-03公開
    QR CODE