| 研究生: |
黃相瑀 Huang, Hsiang-Yu |
|---|---|
| 論文名稱: |
薄膜反應器之甲烷蒸氣重組結合水氣轉移反應數值計算 The Simulation Study on a Methane Steam Reformer Integrated with a Water Gas Shift Reactor in a Membrane Reactor |
| 指導教授: |
江滄柳
Jiang, Tsung-Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 產氫 、甲烷蒸氣重組 、水氣轉移反應 、數值模擬 |
| 外文關鍵詞: | Methane Steam Reforming, Water-Gas Shift Reaction, Membrane, Simulation |
| 相關次數: | 點閱:87 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以數值模擬方法,建立整合含親氫薄膜之重組反應器與水氣轉移反應器之分析模式,先針對甲烷重組器結合水氣轉移反應器之影響,進行模擬分析探討。探討之參數包括:燃燒室進氣當量比、燃燒室進氣量、水蒸氣對甲烷之進氣比及甲烷重組反應器之幾何尺寸等。模擬結果顯示,在貧油條件下,增加燃燒室進氣當量比及燃燒室進氣量皆會使甲烷重組器溫度增加,並提升重組反應之甲烷轉化率,但會降低一氧化碳之轉移率。提高水蒸氣對甲烷之進氣比,可提升甲烷轉化率及增加氫氣之產量,同時可提升一氧化碳轉移率。增加重組器與燃燒室之接觸面積,可提升重組反應之甲烷轉化率及氫氣產出濃度。並針對親氫薄膜對產生高純度氫氣效能影響進行研究分析,及探討水蒸氣對甲烷之進氣比對產氫效能之影響。模擬結果顯示,親氫薄膜對產氫有正面效果,可使氫氣產量增多。至於增加重組器之水蒸氣對甲烷進氣比(S/C),可提升氫氣產出濃度,但實際氫氣產量則會有遞減之趨勢。
The numerical analytical model for the hydrogen production from the methane steam reforming in a hydrogen separation membrane integrated with a water-gas shift reactor has been developed. It has been applied to investigating the effect of the equivalence ratio of the combustor, the inlet flow rate of the combustor, the geometric parameters of the methane steam reformer, and the hydrogen separation membrane on the performance of purified-hydrogen production from a methane steam reformer. In addition, effects of the steam-to-carbon ratio of the reformer on the production of hydrogen are examined. The simulation results obtained from the present study show that in fuel-lean conditions, as the equivalence ratio and the inlet flow rate of the combustor increase, the temperature of the reformer is raised, promoting the methane steam reforming but reducing the conversion rate of carbon monoxide. A higher steam-to-carbon ratio of the reformer increases the methane conversion rate, the production rate of hydrogen and the conversion rate of carbon monoxide. Increasing the contact area between the combustor and the reformer also raises the methane conversion rate and the production rate of hydrogen. The membrane has a positive effect on the hydrogen generation, resulting in more the hydrogen production. In a membrane reactor, a higher steam-to-carbon ratio of the reformer leads to a higher output of hydrogen concentration. However, production rate of hydrogen goes in a reverse direction with an increasing steam-to-carbon ratio.
【1】 Hessley, R. K., Reasoner, J. W., and Riley, J. T., An Introduction to Chemistry, Technology, and Utilization, Coal Science., John Wiley & Sons, New York,1986.
【2】 Sattereld, C. N., Heterogeneous catalysis in industrial practice, McGraw-Hill Inc., New York, 1991.
【3】 Souza, J. M. T., and Rangel, M. C., “Catalytic activity of aluminium-rich hematite in the water gas shift reaction,” Reaction Kinetics and Catalysis Letters, Vol. 83, pp.93-98, 2004.
【4】 Basinska, A., Klimkiewicz, R., and Telerycz, H., “Catalysts of alcohol condensation tested in water-gas in water gas shift reaction,” Reaction Kinetics and Catalysis Letters, Vol. 82, pp.271-277, 2004.
【5】 Saito, M. and Murata, K., “Development of high performance Cu/ZnO catalysts for methanol synthesis and the water-gas in water gas shift reaction,” Catalysis Surveys from Asia, Vol. 8, pp.285-294, 2004.
【6】 Czuppon, T. A., Knez, S. A., and Newsome, “Hydrogen” In Encyclopedia of Chemical Technology, Kirk, R. E., and D. F. Othmer (eds.), 4th edition, Vol. 13, pp. 838-894, 1995.
【7】 Felipe, B. L. “The high-temperature, high-pressure homogeneous water-gas shift reaction in a membrane reactor,” Ph.D. Thesis, University of Pittsburgh, 2004.
【8】 Kim., G. Y., Mayor, J. R., and Ni, J., “Parametric study of microreactor design for water gas shift reactor using an integrated reaction and heat exchange model,” Chemical Engineering Journal, Vol. 110, pp.1-10, 2005.
【9】 Pino, L., Vita, A., Cipitì, F., Laganà, M., and Recupero, V., “Comparative analysis of catalysts for co preferential oxidation,” Fuel Cell Seminar, 2006.
【10】 Lee, S., Ahmed, S., and Ahluwalia, R., “Steam reforming of ethanol at elevated pressure for hydrogen production,” Fuel Cell Seminar, 2006.
【11】 Maxim, L., and Dennis, W., “A reforming system for co-generation of hydrogen and mechanical work from methanol,” Journal of Power Sources, Vol. 162, pp.597–605, 2006.
【12】 Dittmeyer, R., Höllein, V., and Daubb, K., “Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium,” Journal of Molecular Catalysis A: Chemical, Vol. 173, pp.135-184, 2001.
【13】 Shirasaki Y., Tsuneki T., and Yasuda I., “Application of membrane reformer to hydrogen production from various hydrocarbon fuels,” Fuel Cell Seminar, 2006.
【14】 Killmeyer, R., Howard, B., Ciocco, M., Morreale, B., Enick, R., and Bustamante, F., “Water-gas shift membrane reactor studies,” FY 2004 Progress Report, DOE Hydrogen Program, National Energy Technology Laboratory, 2004.
【15】 Kaldis, S. P., Skodras, G., and Sakellaropoulos, G. P., “Energy and capital cost analysis of CO2 capture in coal IGCC processes via gas separation membranes,” Fuel Processing Technology, Vol. 85, pp.337-346, 2004.
【16】 Paglieri, S. N., and Way, J. D., “Innovation in palladium membrane research,” Separation and Purification Methods, Vol. 31, pp. 1-170, 2002.
【17】 Knapton, A. G., “Palladium alloys for hydrogen diffusion membranes - A review of high permeability materials,” Platinum Metals Review, Vol.21, pp.44-55, 1977.
【18】 Grashoff, G. L., Pilkington, C. E., and Corti, C. W., “The purification of hydrogen - A review of the technology emphasizing the current status of palladium membrane diffusion,” Platinum Metals Review, Vol.27, pp.157-165, 1983.
【19】 Schmidt, A., Haidar, R., and Schomacker, R., “Selectivity of partial hydrogenation reactions performed in a pore-through-flow catalytic membrane reactor,” Catalysis Today, Vol.104, pp.305-312, 2005.
【20】 Kikuchi, E., Uemiya, S., Sato, N., Inoue, H. Ando, H., and Matsuda, T., “Membrane reactor using microporous glass-supported thin film of palladium. Application to the water-gas shift reaction,” Chemistry Letters, Vol.18 , pp.489, 1989.
【21】 Uemiya, S., Sato, N., Ando, H., and Kikuchi, E., “The water-gas shift reaction assisted by a palladium membrane reactor,” Industrial and Engineering Chemistry Research, Vol. 30, pp.585-589, 1991.
【22】 Giessler, S., Jordan, L., Diniz da Costa, J. C., Max Lu, G. Q. “Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction,” Separation and Purification Technology, Vol. 32, pp.255-264, 2003.
【23】 Arstad, B., Venvik, H., Klette, H., Walmsley, J. C., Tucho, W. M., Holmestad R., Holmen, A., and Bredesen, R., “Studies of self-supported 1.6 μm Pd/23 wt.% Ag membranes during and after hydrogen production in a catalytic membrane reactor,” Catalysis Today ,Vol.118, pp.63–72, 2006.
【24】 Specchia, S., Galletti, C., Fiorot, S., Saracco, G., and Specchia, V., “CO preferential oxidation over Rh-supported catalyst in H2-rich gas for fuel cell applications,” Fuel Cell Seminar, 2006.
【25】 Basile, A., Chiappetta, G., Tosti, S., and Violante, V., “Experimental and simulation of both Pd and Pd/Ag for a water-gas shift membrane reactor,” Separation and Purification Technology, Vol. 25, pp.549-571, 2001.
【26】 Johan, N.K., Leon,L., “Developing a heating procedure to optimize hydrogen permeance through Pd-Ag membranes of thickness less than 2.2 μm,” Journal of Membrane Science, Vol.195, pp.203-213, 2002.
【27】 Moon, D., Ryu, J., Choi, E., Lee, Y., Yoo, K., and Lee, S., “Studies on the development of high performance WGS catalyst for fuel processor applications,” Fuel Cell Seminar, 2006.
【28】 Damle, A., Ganwal S., and Venkataram, V., “A simple model for a water-gas shift membrane reactor,” Gas Separation and Purification, Vol. 8, pp. 101-106, 1994.
【29】 McBridge, R. B., and Mckinley, D. L., “A new hydrogen recovery route,” Chemical Engineering Progress, Vol.61, pp.81-86, 1965.
【30】 Antonizaai, A. B., Haasz, A. A., and Strangeby, P.C., “The effect of adsorbed carbon and sulphur on hydrogen permeation through palladium,” Journal of Nuclear Materials, Vol.162, pp.1065-1070, 1989.
【31】 Li, A., Liang, W., and Hughes, R., “The effect of carbon monoxide and stream on the hydrogen permeability of a Pd/stainless steel membrane,” Journal of Membrane Science, Vol.165, pp.135-141, 2000.
【32】 Amano, M., Nishimura, C., and Komaki, M., “Effect of high concentration of CO and CO2 on hydrogen permeation through the palladium membrane,” Materials Transactions JIM, Vol.31, pp.404, 1990.
【33】 Lund, C. R. F., “Water-gas shift kinetics over iron oxide catalysts at membrane reactor conditions,” DOE Project-Final Report, 2002.
【34】 Marcelo, S. B., Elisabete, I. S., Elisabete, M. A., and Edson A. T., “Evaluation of the water-gas shift and CO methanation processes for purification of reformate gases and the coupling to a PEM fuel cell system,” Journal of Power Sources, Vol.145, pp.50–54, 2005.
【35】 Rakesh, R., Willigan, R. R., Dardas, Z., and Vanderspurt, T. H., “Water gas shift activity and kinetics of Pt/Re catalysts supported on ceria-zirconia oxides,” Applied Catalysis B: Environmental, Vol.66, pp.23–28, 2006
【36】 Ye, S. Y., Tanaka, S., Esashi, M., Hamakawa1, S., Hanaoka1, T., and Mizukami1, F., “Thin palladium membrane microreactors with oxidized porous silicon support and their application,” J. Micromech. Microeng. Vol.15, pp.2011–2018, 2005.
【37】 Lattner, J, R., and Harold, M. P., “Comparison of conversional and membrane reactor fuel processors for hydrogen-based PEM fuel cell systems,” International Journal of Hydrogen Energy, Vol.29, pp.393-417, 2004
【38】 Tong, J., and Matsumura, Y., “Pure hydrogen production by methane steam reforming with hydrogen -permeable membrane reactor,” Catalysis Today, Vol.111, pp.147-152, 2005.
【39】 Kaldis, S. P., Kapantaidakis, G. C., and Sakellaropoulos, G. P., “Simulation of multiconponent gas separation in a hollow fiber membrane by orthogonal collocation-hydrogen recovery from refinery gases,” Journal of Membrane Scienc, Vol.173, pp.61-71, 2000.
【40】 Ilias S., “Separation of hydrogen and carbon dioxide using a novel membrane reactor in advanced fossil energy conversion process,” DOE Annual Report, 2002.
【41】 Huang, J., Azzami, L. E., Ho, W. S. W., “Modeling of CO2-selective water shift membrane reactor for fuel cell,” Journal of Membrane Science, Vol.261, pp.67-75, 2005.
【42】 Rahimpour, M. R., Ghader, S., “Enhancement of CO conversion in a novel Pd-Ag membrane reactor for methanol synthesis,” Chemical Engineering and Processing, Vol.43, pp.1181-1188, 2004.
【43】 Marigliano, G., Barbieri, G., Drioli, E., “Equilibrium conversion for a Pd-based membrane reactor. Dependence on the temperature and pressure,” Chemical Engineering and Processing, Vol.42, pp. 231-236, 2003.
【44】 Balamurali, K. R. N., and Michael, P. H., “Hydrogen generation in a Pd membrane fuel processor: Productivity effects during methanol steam reforming,” Chemical Engineering Science, Vol.61, pp.6616 – 6636, 2006.
【45】 Tiemersma, T. P., Patil, C. S., Annaland, M. V. S., and Kuipers, J. A. M., “Modeling of packed bed membrane reactors for autothermal production of ultrapure hydrogen,” Chemical Engineering Science, Vol.61, pp.1602-1616, 2006
【46】 Fernandes, F. A. N., Soares Jr., A. B., “Methane steam reforming modeling in a palladium membrane reactor,” Fuel, Vol.85, pp.569–573, 2006.
【47】 Fabiano, A. N. F., and Aldo, B. S. J.,“ Methane steam reforming modeling in a palladium membrane reactor,” Fuel Vol.85 , pp.569–573, 2006.
【48】 Yua, W., Ohmoria, T., Yamamotoa, T., Endoa, A., Nakaiwaa, M., Hayakawaa T., Itoha, N., “Simulation of a porous ceramic membrane reactor for hydrogen production,” International Journal of Hydrogen Energy, Vol.30, pp.1071 – 1079, 2005.
【49】 Kær, S. K., Dahlqvist, M., Saksager, A., Bang, M., Nielsen, M. P., and Korsgaard, A., “Development and validation of a CFD-based steam reformer model”, Fuel Cell Seminar, 2006.
【50】 Nielsen, M., Korsgaard, A., Mandø, M., Bovo, M., Kaer, S., and Bang, M., “Experimental characterization and modeling of an ethanol steam reformer,” Fuel Cell Seminar, 2006.
【51】 Seo, Y. S., Seo, D. J., Seo, Y. T., and Yoon, W. L., “Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor,” Journal of Power Sources, Vol.161, pp.1208–1216, 2006.
【52】 Keyur, S. P., and Aydin K. S., “Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor,” International Journal of Hydrogen Energy, Vol.32, pp. 2344 – 2358, 2007.
【53】 Yu, W., Ohmori, T., Kataoka, S., Yamamoto, T., Endo, A., Nakaiwa, M., and Itoh, N., “A comparative simulation study of methane steam reforming in a porous ceramic membrane reactor using nitrogen and steam as sweep gases,” International Journal of Hydrogen Energy, Vol.33, pp.685-692, 2007.
【54】 潘建文,“鈀薄膜反應器對甲醇水蒸氣重組反應之動力學研究“,碩士論文,長庚大學,化工與材料工程研究所,2001。
【55】 崔志剛,“鈀薄膜對氫氣在銅鋅觸媒上的吸附作用“,碩士論文,長庚大學,化工與材料工程研究所,2001。
【56】 許新圻,“混合氣中氫氣在鈀膜滲透現象研究“,碩士論文,長庚大學,化工與材料工程研究所,2003。
【57】 楊紹民,“甲醇水蒸氣重組反應器之最適化設計與操作“,碩士論文,大同大學,化學工程研究所,2003。
【58】 林志宇,“甲醇蒸汽重組之薄膜反應器:單套管反應器之實驗”,碩士論文,大同大學,化學工程研究所,2003。
【59】 張耿榮,“甲醇蒸汽重組之薄膜反應器:單套管反應器之數據回歸與模擬”,碩士論文,大同大學,化學工程研究所,2003。
【60】 蔡聖權,“甲醇水蒸氣重組在鈀膜反應器的數學與電腦模擬”,碩士論文,國立臺灣大學,化學工程學研究所,2001。
【61】 王文徽,“鈀銀合金膜反應器進行乙醇自熱化水蒸氣重組之研究”,碩士論文,逢甲大學,化學工程學系,2005。
【62】 葉筱均,“鈀銀合金膜反應器進行甲烷水蒸氣重組之研究”,碩士論文,逢甲大學,化學工程學系,2006。
【63】 Lin, S. T., Chen, T. H., Yu, C. C., Liu, Y. C., and Lee, C. H., “Modeling an experimental methane fuel processor,” Journal of Power Sources, Vol.148, pp.43-53, 2005.
【64】 Lin, S. T., Chen, T. H., Yu, C. C., Liu, Y. C., and Lee, C. H., “Dynamic modeling and control structure design of an experimental fuel processor,” International Journal of Hydrogen Energy,Vol.31, pp.413-426, 2006.
【65】 Lin, Y. M., Lee, G. L., and Rei, M. H., “An integrated purification and production of hydrogen with a palladium membrane-catalytic reactor,” Catalysis Today, Vol.44, pp.343-349, 1998.
【66】 Lin, Y. M., and Rei, M. H., “Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer,” International Journal of Hydrogen Energy, Vol.25, pp.211-219, 2000.
【67】 Chen, S. C., Hung, C. C. Y., Tu, G. C., and Rei, M. H., “Perturbed hydrogen permeation of a hydrogen mixture-new phenomena in hydrogen permeation by Pd membrane,” International Journal of Hydrogen Energy, Vol.33, pp.1880-1889, 2008.
【68】 Ahmed, K., and Foger, K., “Kinetics of internal steam reforming of methane on Ni/YSZ-bed anodes for solid oxide fuel cells,” Journal of Catalysis Today, Vol.63, pp.479-487, 2000
【69】 Chachuat, B., Mitsos, A., and Barton, P. I., “Optimal design and steady-state operation of micro power generation employing fuel cells,” Chemical Engineering Science, Vol.60, pp.4535 – 4556, 2005
【70】 Ward, T. L., and Dao, T., “Model of hydrogen permeation behavior in palladium membranes,” Journal of Membrane Science, Vol.153, pp.211-231, 1999.
【71】 McCool, B., Xomeritakis, G., and Lin, Y. S., “Composition control and hydrogen permeation characteristics of sputter deposited palladium–silver membranes,” Journal of Membrane Science, Vol.161, pp.67-76, 1999.
【72】 Tosti, S., Bettinali, L., and Violante, V., “Rolled thin Pd and Pd-Ag membranes for hydrogen separation and production,” International Journal of Hydrogen Energy, Vol.25, pp.319-325, 2000.
【73】 FLUENT 6.3 User's Guide, 2006.