簡易檢索 / 詳目顯示

研究生: 邱培軒
Chiu, Pei-Hsuan
論文名稱: 氧化鎵系列氧化物半導體在氫氣產生器,電阻式隨機存取記憶體及光薄膜電晶體中之研製
Investigation of Ga2O3 -based oxide semiconductors on Hydrogen Generation, Resistive Random-Access Memory and Phototransistor
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 77
中文關鍵詞: 氧化鎵氧化銦鎵氫氣電阻式記憶體薄膜電晶體紫外光感測
外文關鍵詞: Ga2O3, Hydrogen, RRAM, Thin Film Transistor, UV Sensor
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為透過射頻濺鍍法成長之氧化鎵及透過共濺鍍法成長之氧化鎵系列氧化物半導體的研究及應用。氧化鎵本身為透明材料,適合作為光敏元件,並且在溶液中的耐久性十分良好,故而能夠做為光電化學水分解之電極。並且由於其內在的高電阻特性,以及對氧氣具有非常敏感的電導率,對電阻式隨機存取記憶體(RRAM)來說,也為一種良好材料。而氧化鎵的能隙寬度為4.9電子伏特,其對應的偵測波長為250奈米,故而可以期待氧化鎵系列氧化物半導體應用於深紫外光的偵測運用,使其不僅可以成為薄膜電晶體的主動層,更可以變身為紫外光吸光層運用於光偵測器上。
    在我的實驗一中,利用氧化鎵薄膜其透明且良好的溶液耐久特性,作為光電化學水分解的光電極,在寬能隙的條件下,透過短波長紫外光照射,以產生氫氣之綠色能源,並且通過不同的氧分量調控氧化鎵薄膜,探討在不同狀態下的入射光子轉換效率等。
    在第二個實驗裡,則是透過氧化鎵薄膜其高電阻特性,作為電阻式隨機存取記憶體的研製,並且通過不同氧分量比例試驗出其記憶體特性,可以發現唯有在特定比例的氧分量中,才能表現出良好的記憶體特性,從實驗可以得到氧分量為25%之記憶體,其開關電流比能達到105以上,並且擁有200次以上的切換次數及104秒的開關維持時間,而其設置(set)與重置(reset)的電阻切換現象能夠以空間電荷限制電流機制與歐姆接觸來表示。
    第三個實驗中,我們通過共濺鍍法,選擇氧化鎵與氧化銦共濺鍍而成的混合氧化物半導體材料,運用於薄膜電晶體元件上。而混合出的氧化銦鎵薄膜被製備成薄膜電晶體的主動層,通過改變氧化銦的瓦數,量測不同混合比例下的元件電特性,並且在最佳電特性的比例下,再通過不同氧分量比例來觀察其電特性及光特性之改變。從實驗可以得到良好的電特性,在外偏壓8伏特的量測條件下,臨限電壓、次臨限擺幅、電流開關比分別為 0.83 V、0.14 V/decade、~103。此元件同樣也被測試其紫外光感測能力,在外偏壓-1伏特的量測條下,對應的紫外光對可見光拒斥比及光響應分別為1.12×104及0.34A/W。

    This thesis mainly focuses on the research and application of Ga2O3 deposited by RF sputtering and Ga2O3-based oxide semiconductors deposited by co-sputtering. Ga2O3 is a transparent material, suitable as a photosensitive element, and it has an excellent durability in solution. Therefore, it can be used in photoelectrochemical water decomposition of the electrode. Moreover, the inherent high resistance characteristics and very sensitive conductivity to oxygen of Ga2O3 make it also be a good material for Resistive Random Access Memory (RRAM). Ga2O3 has the wide bandgap energy width of 4.9 electron volts, and its corresponding detection wavelength is 250 nanometers. Therefore, the Ga2O3-based oxide semiconductors are not only applied in the thin film transistors as active layers but also used for the ultraviolet sensor devices as absorption layers.
    In my first experiment, using the transparent property and excellent solution durability of Ga2O3 film as a photoelectrode of photoelectrochemical water-splitting. Under a wide bandgap condition, using the short-wavelength UV light to irradiated the photoelectrode, and the hydrogen would be generated in the water splitting. Moreover, we used different oxygen content to regulate Ga2O3 film, and explore the incident photon conversion efficiency under different states.
    In the second experiment, the inherent high resistance characteristics of the Ga2O3 thin film was used as a resistive random access memory. Moreover, the memory characteristics of the Ga2O3 film were tested by different oxygen content. We found that only in a specific ratio can exhibit the good memory characteristics . From the experiment, a memory with an oxygen component of 25% has the best performance among these samples. It can be found that it has bipolar resistance switch characteristics, its switching current ratio was more than 105 times. The switching cycle could be up to 200 times. And the retention time was about 104 seconds. The Set and Reset processes are primarily affected by the conduction mechanism of the ohmic and space charge limited current.
    In the third experiment, demonstrating thin film transistor on SiO2/Si substrate with IGO oxide semiconductors by co-sputtering using Ga2O3 and In2O3 targets at room temperature. The mixed IGO thin film is applied as the active layer of the thin film transistor. By changing the wattage of In2O3, the electrical characteristics of the device at different mixing ratios are measured. In addition, at the In2O3 content of the optimal electrical characteristics, also using different proportions of oxygen contents to observe the variety of their electrical and optical properties. The fabricated device presents excellent electrical characteristics. Under the condition of 8V external bias measurement, the threshold voltage, sub-threshold slope, and the On/Off current ratio are 0.83 V, 0.14 V/decade, and ~103, respectively. This device was also tested for its UV sensing capability. Under the external bias -1V, the UV-to-visible rejection ratio and photoresponsivity are 1.12×104 and 0.34 A/W.

    Contents 摘要 I Abstract III Acknowledgement VI Contents VIII Table Captions XI Figure Captions XII Chapter1 Introduction 1 1-1 The Review of Wide Band Gap Semiconductor 1 1-2 The Mechanisms of Photoeletrochemical Hydrogen Generation 2 1-3 The Mechanisms of Resistive Random Access Memory (RRAM) 2 1-3.1 Ohmic Conduction 3 1-3.2 Schottky Emission 3 1-3.3 Space-Charge-Limited-Current Conduction 4 1-3.4 Frenkel-Poole Emission 5 1-3.5 Tunneling 5 1-4 The Mechanisms of Phototransistor 6 1-5 Motivation 6 1-5.1 Basic Properties of Ga2O3 7 1-5.2 Basic Properties of In2O3 8 Chapter2 Principles of Photoelectrochemical Hydrogen Generation、RRAM and Phototransistor 16 2-1 The Structures of Photoelectrochemical Hydrogen Generation 16 2-2 Important parameters of Photoelectrochemical Hydrogen Generation 17 2-2.1 Incident Photon-to-Current conversion Efficiency (IPCE) 17 2-2.2 Applied Bias Photon-to-Current Efficiency (ABPE) 18 2-3 The Structures and Characteristic of Resistive Random Access Memory(RRAM) 18 2-3.1 Compliance Current 19 2-3.2 Threshold Voltage 19 2-3.3 The Formation of Filaments 20 2-3.4 IV Characteristic Curve 20 2-4The Structures of Phototransistor 21 2-5 Important parameters of Phototransistor 22 2-5.1 Field Effect Mobility (μeff) 22 2-5.2 On/Off Current Ratio (Ion/Ioff) 24 2-5.3 Threshold Voltage (VTH) 24 2-5.4 Sub-Threshold Slope (S.S.) 25 Chapter3 Photoelectrochemical Hydrogen Generation with Ga2O3 Films Fabricated by Room Temperature RF-Magnetron Sputtering 28 3-1 Fabrication of Ga2O3 Photoelectrochemical Hydrogen Generation 28 3-2 Characteristics and Data Analysis 29 3-2.1 Iphoto/Idark 30 3-2.2 Incident Photon-to-Current conversion Efficiency (IPCE) 30 3-2.3 Applied Bias Photon-to-Current Efficiency (ABPE) 31 3-3 Summary 31 Chapter4 Resistive Random Access Memory with Ga2O3 Films Fabricated by Room Temperature RF-Magnetron Sputtering 37 4-1 Fabrication of Ga2O3 Resistive Random Access Memory 37 4-2 Characteristics and Data Analysis 38 4-2.1 IV Curve 38 4-2.2 Endurance and Retention Time 39 4-2.3 Effects of oxygen content on Ga2O3 thin film 39 4-2.4 Conduction Mechanisms of Ga2O3 Memory 40 4-3 Summary 41 Chapter5 IGO Oxide Semiconductor Fabricated via Co-Sputtering Method for Applying in Phototransistor 51 5-1 Fabrication of IGO Channel TFTs with SiO2 Gate Dielectric 51 5-2 Electrical Characteristics and Data Analysis of IGO TFTs 52 5-3 Optical Properties and Data Analysis of IGO TFTs 54 5-4 Summary 55 Chapter6 Conclusions and Future Prospects 66 6-1 Conclusions 66 6-2 Future Prospects 67 Reference 73

    [1] Fabrizio Roccaforte, Patrick Fiorenza, Giuseppe Greco, Raffaella Lo Nigro,
    Filippo Giannazzo, Ferdinando Iucolano and Mario Saggio, “Emerging trends in
    wide band gap semiconductors (SiC and GaN) technology for power devices,”
    Microelectron Eng, vol. 187–188, pp. 66-77, Feb. 2018.
    [2] M. Debucquoy, S. Verlaak, S. Steudel, K. Myny, J. Genoe, ,P. Heremans,
    “Correlation between bias stress instability and phototransistor operation of
    pentacene thin-film transistors,” Appl. Phys. Lett., vol. 91, pp. 103508, Aug. 2007.
    [3] Y. Guo, C. Du, C.-A. Di, J. Zheng, X. Sun, Y. Wen, L. Zhang, W. Wu, G. Yu, Y. Liu,
    “Field dependent and high light sensitive organic phototransistors based on linear
    asymmetric organic semiconductor,” Appl. Phys. Lett., vol. 94, pp. 143303, Mar. 2009.
    [4] Y.-Y. Noh, D.-Y. Kim, and K. Yase, “Highly sensitive thin-film organic
    phototransistors: Effect of wavelength of light source on device performance,” J.
    Appl. Phys., vol. 98, Aug. 2005.
    [5] Hu, Yan, Dong, Guifang ; Liu, Chen ; Wang, Liduo ; Qiu, Yong, “Dependency of
    organic phototransistor properties on the dielectric layers”, Appl. Phys. Lett., vol.
    89, pp. 072108, Aug. 2006.
    [6] K.J. Baeg, Maddalena Binda, Dario Natali, Mario Caironi, and Y.Y. Noh,
    “Organic Light Detectors: Photodiodes and Phototransistors,” Adv. Mater., vol. 25, pp. 4267-4295, Mar. 2013.
    [7] Wei Wang, Dongge Ma, “Light response characteristics of organic thin-film
    transistors with and without a P(MMA–GMA) modification layer,” Semicond. Sci.
    Technol., vol. 25, pp. 115009, no. 11, Oct. 2010.
    [8] Hsiao-Wen Zan, Shih-Chin Kao, Shiang-Ruei Ouyang, “Pentacene-Based Organic
    Phototransistor With High Sensitivity to Weak Light and Wide Dynamic Range,”
    IEEE ELECTR DEVICE L, vol. 31, pp. 135-137, Feb. 2010.
    [9] E. Cicek, R. McClintock, C. Y. Cho, B. Rahnema, and M. Razeghi, “Growth of AlGaN on silicon substrates: a novel way to make back-illuminated ultraviolet photodetectors,” Appl. Phys. Lett., vol. 103, 2013.
    [10] Weiyan Guo, Yating Guo, Hao Dong and Xin Zhou, “Tailoring the electronic structure of β-Ga2O3 by non-metal doping from hybrid density functional theory calculations,” Phys. Chem. Chem. Phys. vol. 17, Jan. 2015.
    [11] Encyclopedia of Inorganic Chemistry, edited by King, R (1994)
    [12] Oliver Bierwagen and James S. Speck, “High electron mobility In2O3 ( 001 ) and (111) thin films with nondegenerate electron concentration,” Appl. Phys. Lett. vol. 97, pp. 072103, Jul. 2010.
    [13] Q.J. Wang, Q.H. Tan and Y.K. Liu, “Magnetic properties in carbon-doped In2O3: A density functional theory investigation,” Physica B: Condensed Matter vol. 450, pp. 54-57, Oct. 2014.
    [14] http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/search
    [15]E. W. Lim and R. Ismail, “Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, pp. 586-613, Sep. 2015.
    [16]http://www.stallinga.org/ElectricalCharacterization/2terminal/index.html.
    [17]https://tc.diytrade.com/china/pd/10922495/%E5%85%89%E9%9A%94%E9%9B%A2%E5%99%A8.html
    [18] S. J. Chang, Y.L. Wu, W.Y. Weng, Y.H. Lin, W.K. Hsieh, J.K. Sheu, and C.L. Hsu,
    “Ga2O3 Films for Photoelectrochemical Hydrogen Generation,” Journal of The
    Electrochemical Society, vol. 161 (9), pp. H508-H511, Jun. 2014.
    [19] Nabeen K. Shrestha, Kiyoung Lee, Robin Kirchgeorg, Robert Hahn, and Patrik
    Schmuki, “Self-organization and zinc doping of Ga2O3 nanoporous architecture: A
    potential nano-photogenerator for hydrogen," Electrochemistry Communications,
    vol. 35, pp. 112–115, Oct. 2013.
    [20] http://energyprofessionalsymposium.com/?p=20390
    [21] Lingyun Wang, Yu Wang, Patrik Schmuki, Stepan Kment, and Radek Zboril,
    “Nanostar morphology of plasmonic particles strongly enhances photoelectrochemical water splitting of TiO2 nanorods with superior incident photon-to-current conversion efficiency in visible/nearinfrared region,” Electrochimica Acta, vol. 260, pp. 212-220, Jan. 2018.
    [22]https://www.researchgate.net/post/how_can_we_measure_and_calculate_the_photo conversion_efficiency_of_a_semiconductor_photoanode_in_water_splitting
    [23] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, “Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 87, pp. 122101-122103, Sep. 2005.
    [24] D. I. Son, D. H. Park, W. K. Choi, S. H. Cho, W. T. Kim, and T. W. Kim, “Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer,” Nanotechnology, vol. 20, pp. 195203-195209, May 13 2009.
    [25] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, et al., “TiO[sub 2] anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching,” Applied Physics Letters, vol. 89, pp. 223509-223511, 2006.
    [26] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, et al., “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat Nanotechnol, vol. 5, pp. 148-153, Feb. 2010.
    [27] S. Lee, H. Kim, J. Park, and K. Yong, “Coexistence of unipolar and bipolar resistive switching characteristics in ZnO thin films,” Journal of Applied Physics, vol. 108, pp. 076101-076103, Oct 1 2010.
    [28] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, “Anode-interface localized filamentary mechanism in resistive switching of TiO[sub 2] thin films,” Appl. Phys. Lett., vol. 91, pp. 012907-012909, May. 2007.
    [29] T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, “
    High responsivity of amorphous indium gallium zinc oxide phototransistor with
    Ta2O5 gate dielectric,” Appl. Phys. Lett., vol. 101, pp. 261112, Dec. 2012.
    [30] J. L. Zhao, X. W. Sun, and S. T. Tan, “Bandgap-Engineered Ga-Rich
    GaZnO Thin Films for UV Transparent Electronics,” IEEE Trans. Electron Devices, vol. 56, pp. 2995-2999, no. 12, Dec. 2009.
    [31] Donald A. Neamen, Semiconductor physics and devices: basic principles-3rd ed., McGraw-Hill, New York, 2003.
    [32] T. C. Fung, K. Nomura, H. Hosono, and J. Kanicki, “PLD amorphous In-Ga-Zn-O TFTs for future optoelectronics,” Proc. SID Vehicles and Photons, pp. 54, 2008.
    [33] Ilia Valov and Michael N Kozicki , “Cation-based resistance change memory,” Appl. Phys. Lett., vol. 46, pp. 074005, no. 7, Jan. 2013.
    [34] T. Minami, “Transparent and conductive multicomponent oxide films prepared by magnetronsputtering,” J. Vac. Sci. A, vol.17, no. 1765, Mar. 1999.
    [35] J. H. Park, Y. B. Yoo, J. Y. Oh, J. H. Lee, T. I. Lee, and H. K. “Baik, Enhanced performance of solution-processed amorphous gallium-doped indium oxide thin-film transistors after hydrogen peroxide vapor treatment,” Appl. Phys. Express, vol. 7, Art. no. 051101, Apr. 2014.
    [36] M.C. Chen, T.C. Chang, C.T. Tsai, S.Y. Huang, S.C. Chen, C.W. Hu, Simon M. Sze, and M.J. Tsai, “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films,” Appl. Phys. Lett., vol. 96, pp. 262110, May. 2010.
    [37] J.W. Zhao, J. Sun, H.Q. Huang, Feng-Juan Liu, Zuo-Fu Hu, and Xi-Qing Zhang, “Effects of ZnO buffer layer on GZO RRAM devices,” Applied Surface Science, vol. 258, pp. 4588-4591, Mar. 2012.
    [38] H.D. Kim , M.J. Yun , K.H. Kim ,and S. Kim, “Oxygen-doped zirconium nitride based transparent resistive random access memory devices fabricated by radio frequency sputtering method,” Journal of Alloys and Compounds,vol. 675, pp. 183-186, Aug. 2016.
    [39] C.L. Lin , C.C. Tang, S.C. Wu, P.C. Juan, T.K. Kang, “Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of
    Al/ZnO/Al resistive RAM (RRAM),” Microelectronic Engineering, vol. 136, pp.
    15-21, Mar. 2015.
    [40] J.Y. Li, S.P. Chang , M.H. Hsu, and S.J. Chang, “Photo-Electrical Properties of MgZnO Thin-Film Transistors With High-k Dielectrics,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 30, pp. 59-62, no. 1, Jan. 2018.
    [41] T. H. Chang, C. J. Chiu, S. J. Chang, T. Y. Tsai, T. H. Yang, Z. D. Huang, and W. Y. Weng, “Amorphous InGaZnO ultraviolet phototransistors with double-stack Ga2O3/SiO2 dielectric,” Appl. Phys. Lett. vol. 102, pp. 221104, May. 2013.
    [42] Kyungsoo Jang, Hyeongsik Park, Sungwook Jung, Nguyen Van Duy, Youngkuk Kim, Jaehyun Cho, Hyungwook Choi, Taeyoung Kwon, Wonbaek Lee, Daeyeong Gong , Seungman Park , Junsin Yi, Doyoung Kim, Hyungjun Kim, “Optical and electrical properties of 2 wt.% Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators,” Thin Solid Films, vol. 518, pp. 2808–2811, Mar. 2010.
    [43] W.S. Shih, S.J. Young, L.W. Ji, W. Water, T.H. Meen, K.T. Lam, J. Sheen, W.C. Chu, “Thin film transistors based on TiO2 fabricated by using radio-frequency magnetron sputtering,” Journal of Physics and Chemistry of Solids,vol. 71, pp. 1760–1762, Dec. 2010.
    [44] Yanbo Li, Takero Tokizono, Meiyong Liao, Miao Zhong , Yasuo Koide , Ichiro Yamada, and Jean-Jacques Delaunay, “Effi cient Assembly of Bridged β -Ga2O3 Nanowires for Solar-Blind Photodetection,” Adv. Funct. Mater. ,vol. 20, pp. 3972–3978, Aug. 2010.
    [45] Yanmin Zhao, Jiying Zhang, Dayong Jiang, Chongxin Shan, Zhenzhong Zhang, Bin Yao, Dongxu Zhao, and Dezhen Shen, “Ultraviolet Photodetector Based on a MgZnO Film Grown by Radio-Frequency Magnetron Sputtering,” ACS Appl. Mater. Interfaces, pp. 2428–2430, Oct. 2009.

    無法下載圖示 校內:2023-06-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE