簡易檢索 / 詳目顯示

研究生: 蘇皇偉
Su, Huang-Wei
論文名稱: 應用計算流體力學與田口法於創新構型Π型翼之設計研究
The Application of CFD and Taguchi Method in Design of Innovative Wing Configuration Π-Wing
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 140
中文關鍵詞: 定翼無人機飛機構型計算流體力學田口實驗法
外文關鍵詞: Fixed-Wing, Wing Configuration, Wing-Only, CFD, Taguchi Method
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著定翼無人機外型流場設計發展到達相當的成熟度,對於日益困難的任務需求,針對各項任務內容專門研發創新構型設計是現今無人機設計工程師尋找突破的方法之一。本研究以翼展範圍為2至5公尺的低速低高度太陽能無人機作為設計發想,參考衝壓式降落傘的外型特點自行開發出第一款創新構型-Π式構型(又稱Π型翼)的原型機翼,透過結合田口式直交表實驗法(簡稱田口法)以及兩類計算流體力學(CFD)套裝軟體-OpenVSP以及Ansys Fluent建立一套研究流程;首先設計相同環境與操作條件下之簡易梯形翼,利用升力線理論計算其升力係數與阻力係數用以校正OpenVSP環境建立結果以及Ansys Fluent環境建立結果;接著在Π式構型的概念下設計原始Π型翼,並進行模擬分析,發現升力以及阻力尚不理想。利用田口法將升阻力係數分解成三項品質特性,並設置共八項控制因子,馬赫數作為干擾因子,使用L18直交表進行實驗與控制因子變異分析,再利用信賴區間的概念對數據分析的結果進行重複確認,最後得出之最佳組合的Π型翼。Π型翼設計相較於展弦比為10的梯形翼,雖然升阻比依然較低,然而在每單位翼面機飛機重量15(kgw/m^2)以下以飛行速度20(m/s)、攻角0度下巡航飛行時,太陽能儲存的功率最高可以增加至240%;運用田口法將原始Π型翼改良至最佳組合Π型翼,在展弦比降低的同時最大升阻比數值依然相當,並在攻角0度時最佳組合Π型翼的升力數值相較於原始Π型翼增加66%,奧斯瓦爾德效率因子增加36%,太陽能儲存的功率最高增加至57%。

    In this research, a low-speed and low-altitude solar-plane with a wingspan of 2 to 5 meters is used as a design idea, and the first innovative configuration-the Π configuration is developed by referring to the appearance characteristics of ram-air parachute.
    And we combine Taguchi method and two types of computational fluid dynamics (CFD) software - OpenVSP and Ansys Fluent to establish a step of research and improvement processes for wing design.
    First we design a simple trapezoidal wing under the same operating conditions, and use Prandtl lifting-line theory to calculate its lift and drag coefficient to regulate OpenVSP environment and Ansys Fluent environment.
    Next, established a model of the original Π-type wing under the preset conditions and the concept of the Π-type configuration, simulation analysis was performed. It is found that the lift and drag were not yet ideal.
    Use Taguchi method to decompose the lift and drag coefficient into three quality characteristics, and set total of eight control factors. We also set Mach number as the interference factor. Use the L18 orthogonal table to conduct experiments and control factor variation analysis, and then use the concept of confidence interval to analyze the data.
    In the end, compared with the trapezoidal wing with an aspect ratio of 10, Π-wing has a lower lift-to-drag ratio. However, when cruising and flying speed is 20(m/s), angle of attack is 0, power stored by the solar energy can be increased up to 240%.

    中文摘要 I 英文摘要 III 致謝 VII 目錄 IX 表目錄 XIII 圖目錄 XV 符號表 XX 第一章 緒論 1 1.1. 前言 1 1.2. 研究動機 3 1.3. 文獻回顧 5 1.3.1. 太陽能無人機設計 5 1.3.2. 飛機特殊構型研究 7 1.3.3. 計算流體力學軟體應用 10 1.3.4. 田口法 13 1.4. 研究目的 13 1.5. 研究方法與流程 14 1.6. 論文架構 18 第二章 模擬環境建立 21 2.1. 校正用樣本機翼設計與分析 21 2.1.1. 校正用樣本機翼設計 21 2.1.2. 樣本機翼分析 25 2.2. 環境建立與比較 30 2.2.1. 計算流體力學概念說明 30 2.2.2. OpenVSP介紹 32 2.2.3. OpenVSP環境建立 36 2.2.4. Ansys Fluent 介紹 44 2.2.5. Ansys Fluent環境建立 48 2.2.6. OpenVSP與Ansys Fluent環境比較 54 第三章 Π式構型構想與分析 56 3.1. 原始Π式構型 56 3.1.1. 設計概念 58 3.1.2. 性能分析 60 3.1.3. 原始Π式構型性能比較 64 第四章 田口法構型性能改良 69 4.1. 田口法介紹 69 4.1.1. 實驗設計法簡介 69 4.1.2. 田口法概念與流程 73 4.2. 田口法參數設定 75 4.2.1. 定義品質特性 75 4.2.2. 定義因子 78 4.2.3. 建立實驗直交表 90 4.2.4. 實驗直交表模型建立 92 4.3. 田口法實驗結果 93 4.3.1. 零升力攻角分析 94 4.3.2. 升力係數斜率×翼面積分析 101 4.3.3. 阻力係數分析 105 4.3.4. 最佳化分析及討論 109 4.3.5. 確認實驗 114 第五章 最佳化機翼性能分析 118 5.1. OpenVSP性能探討 118 5.2. Ansys Fluent分析結果與比較 122 5.3. Π式構型潛力評估 131 第六章 結論與未來工作 134 6.1. 結論 134 6.2. 未來工作 136 參考文獻 137

    [1] J. D. Anderson Jr, Fundamentals of Aerodynamics. 2010.
    [2] Boucher and R. Boucher, "Sunrise, the World's First Solar-Powered Airplane," Journal of Aircraft, vol.22, no.10, pp.840-846, 1985.
    [3] Philipp Oettershagen, Amir Melzer, Thomas Mantel, Konrad Rudin, Thomas Stastny, Bartosz Wawrzacz, Timo Hinzmann, Stefan Leutenegger, Kostas Alexisy and Roland Siegwart, "Design of Small Hand-Launched Solar-Powered UAVs: From Concept Study to a Multi-Day World Endurance Record Flight," Journal of Field Robotics, vol.34, no.7, pp.1352-1377, 2017.
    [4] J. L. Hernandez-Toral, I. González-Hernández and R. Lozano, "Sun Tracking Technique Applied to a Solar Unmanned Aerial Vehicle," Drones, vol.3, no.2, pp.51-75, 2019.
    [5] H. Gagnon and D. W. Zingg, "Aerodynamic Optimization Trade Study of a Box-Wing Aircraft Configuration," Journal of Aircraft, vol.53, no.4, pp.971-981, 2016.
    [6] A. C. DeVoria and K. Mohseni, "On the Mechanism of High-Incidence Lift Generation for Steadily Translating Low-Aspect-Ratio Wings," Journal of Fluid Mechanics, vol.813, pp.110-126, 2017.
    [7] J. Xie, Y. Cai, M. Chen and D. N. Mavris, "Integrated Sizing and Optimization of Hybrid Wing Body Aircraft in Conceptual Design," in AIAA Aviation 2019 Forum, pp.2885-2904, 2019.
    [8] J. L. Freeman and G. T. Klunk, "Dynamic Flight Simulation of Spanwise Distributed Electric Propulsion for Directional Control Authority," in 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS): IEEE, pp.1-15, 2018.
    [9] N. T. Nguyen, J. Fugate, U. K. Kaul and J. Xiong, "Flutter Analysis of the Transonic Truss-Braced Wing Aircraft Using Transonic Correction," in AIAA Scitech 2019 Forum, pp.2-17, 2019.
    [10] M. M. Segui, G. Ghazi, R. M. Botez and E. M. Thompson, "Design, Development and Validation of a Cessna Citation X Aerodynamic Model Using OpenVSP Software," in 2018 Modeling and Simulation Technologies Conference, pp.3256-3265, 2018.
    [11] M. A. Azlin, C. M. Taib, S. Kasolang and F. Muhammad, "CFD Analysis of Winglets at Low Subsonic Flow," in Proceedings of the World Congress on Engineering, vol.1, pp.6-8, 2011.
    [12] C. Suresh, K. Ramesh and V. Paramaguru, "Aerodynamic Performance Analysis of a Non-Planar C-wing Using CFD," Aerospace Science and Technology, vol.40, pp.56-61, 2015.
    [13] R. Yurkovich, "Optimum Wing Shape for an active Flexible Wing," in 36th Structures, Structural Dynamics and Materials Conference, pp. 1220-1231, 1995.
    [14] D. Abhiram, R. Ganguli, D. Harursampath and P. P. Friedmann, "Robust Design of Small Unmanned Helicopter for Hover Performance Using Taguchi Method," Journal of Aircraft, vol.55, no.4, pp.1746-1753, 2018.
    [15] 張崇豪, "應用田口方法於撲翼機之設計," 成功大學航空太空工程學系學位論文, pp.1-65, 2010.
    [16] 國立成功大學. "2020綠能無人機創新大獎賽." https://www.greenuav.tw/, 2020.
    [17] NASA. "NASA Airfoil tools." http://airfoiltools.com/search/index, 2020.
    [18] J. R. Gloudemans. "OpenVSP." http://openvsp.org/, 2020.
    [19] C. Sequeira, D. Willis and J. Peraire, "Comparing aerodynamic Models for Numerical Simulation of Dynamics and Control of Aircraft," in 44th AIAA Aerospace Sciences Meeting and Exhibit, pp.1254-1274, 2006.
    [20] R. A. McDonald, "Interactive reconstruction of 3D models in the openVSP parametric geometry tool," in 53rd AIAA Aerospace Sciences Meeting, pp.1014-1023, 2015.
    [21] Ansys. "Ansys公司官方網站." https://www.ansys.com/zh-tw, 2020.
    [22] 楊宏一、陳俊勳, "熱風爐之燃燒, 流場與熱傳數值模擬分析," 2007.
    [23] N. M. Triet, N. N. Viet and P. M. Thang, "Aerodynamic Analysis of Aircraft Wing," VNU Journal of Science: Mathematics-Physics, vol.31, no.2, 2015.
    [24] ANSYS. "2012 Sales Conference Theme and Team Building.", 2020.
    [25] V. Kalro, S. Aliabadi, W. Garrard, T. Tezduyar, S. Mittal and K. Stein, "Parallel Finite Element Simulation of Large Ram‐Air Parachutes," International Journal for Numerical Methods in Fluids, vol.24, no.12, pp.1353-1369, 1997.
    [26] K. Takizawa, T. E. Tezduyar and T. Terahara, "Ram-Air Parachute Structural and Fluid Mechanics Computations with the Space–Time Isogeometric Analysis (ST-IGA)," Computers & Fluids, vol.141, pp.191-200, 2016.
    [27] K. Bergeron, J. Seidel and T. E. McLaughlin, "Wind Tunnel Investigations of Rigid Ram-Air Parachute Canopy Configurations," in 23rd AIAA Aerodynamic Decelerator Systems Technology Conference, pp.2156-2166, 2015.
    [28] F. Škultéty, B. Badánik, M. Bartoš and B. Kandera, "Design of Controllable Unmanned Rescue Parachute Wing," Transportation Research Procedia, vol.35, pp.220-229, 2018.
    [29] 簡文昱, "2016台灣無人飛機創意設計競賽-飛機設計組 結案報告 YEE翼," 2016.
    [30] J.-L. Hantrais-Gervois, R. Grenon, A. Mann and A. Büscher, "Downward Pointing Winglet Design and Assessment within the M-DAW Research Project," The Aeronautical Journal, vol.113, no.1142, pp.221-232, 2009.
    [31] 李輝煌, 田口方法-品質設計的原理與實務. 高立圖書有限公司, 2004.
    [32] G. Redeker and G. Wichmann, "Forward Sweep-A Favorable Concept for a Laminar Flow Wing," Journal of Aircraft, vol.28, no.2, pp.97-103, 1991.
    [33] J. Hall, K. Mohseni, D. Lawrence and P. Geuzaine, "Investigation of Variable Wing-Sweep for Applications in Micro Air Vehicles," in Infotech@ Aerospace, pp.7171-7182, 2005.
    [34] L. Falcao, A. Gomes and A. Suleman, "Design and Analysis of an Adaptive Wingtip," in 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t, pp.2131-2144, 2011.
    [35] L. Falcão, A. Gomes and A. Suleman, "Multidisciplinary Design Optimisation of a Morphing Wingtip," in 2nd international conference on engineering optimization, pp.1-7, 2010.
    [36] M. Shields and K. Mohseni, "Effects of Sideslip on the Aerodynamics of Low-Aspect-Ratio Low-Reynolds-Number Wings," AIAA journal, vol.50, no.1, pp.85-99, 2012.
    [37] C. Lao and E. Wong, "Cfd Simulation of a Wing-In-Ground-Effect Uav," in IOP conference series: materials science and engineering: Institute of Physics Publishing, 2018.
    [38] Q. Qu, Z. Lu, P. Liu, and R. K. Agarwal, "Numerical Study of Aerodynamics of a Wing-in-Ground-Effect Craft," Journal of Aircraft, vol.51, no.3, pp.913-924, 2014.
    [39] J. Kiefer, N. Sørensen, M. Hultmark and M. O. L. Hansen, "The Influence of Wing Twist on Pressure Distribution and Flow Topology," in The Science of Making Torque from Wind 2018, vol.1037, no.2, 2018.
    [40] Mathpages. "The Speed of Sound." https://www.mathpages.com/home/index.htm, 2020.
    [41] L. M. Jones, J. Peterson, E. Schaefer and H. Schulte, "Upper‐Air Density and Temperature: Some Variations and an Abrupt Warming in the Mesosphere," Journal of Geophysical Research, vol.64, no.12, pp.2331-2340, 1959.
    [42] G. C. Furlong and J. E. Fitzpatrick, "Effects of Mach Number and Reynolds Number on the Maximum Lift Coefficient of a Wing of NACA 230-Series Airfoil Sections," 1947.
    [43] J. W. Low, R. Ortiz, E. Vandamme, M. Andrade, B. Biazin, and W. J. Grüneberg, "Nutrient-Dense Orange-Fleshed Sweetpotato: Advances in Drought-Tolerance Breeding and Understanding of Management Practices for Sustainable Next-Generation Cropping Systems in Sub-Saharan Africa," 2020.

    下載圖示 校內:2025-07-09公開
    校外:2025-07-09公開
    QR CODE