| 研究生: |
田家揚 Tien, Chia-Yang |
|---|---|
| 論文名稱: |
數據化最佳控制器之改良:一般自迴序列濾除器的引進與數據化設計誤差的降低 An Improvement on a Data-based LQ Synthesis : The Use of a Generalized AR Sequence Annihilator on Error Reduction |
| 指導教授: |
陳正宗
Chan, J.T.H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 數據化最佳控制設計 |
| 外文關鍵詞: | linear quadratic design, DBCS, Autoregressive process |
| 相關次數: | 點閱:47 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數據化最佳控制(DBLQ)設計,解決了傳統最佳控制(LQ)所面臨的兩個重要問題:系統的狀態必須隨時可得,以及系統數學模式的估測。然而數據化設計的過程中,雜訊對控制器設計的正確性影響甚鉅。為了降低雜訊所造成的誤差,本論文提出改良數據化最佳控制設計法,一般而言,雜訊所造成的設計誤差,將使得最佳解不符合自迴序列的型式,但是真正最佳解乃是符合自迴序列的條件,於是我們引進一般性自迴序列濾除器,利用其序列濾除的特性,使得最佳解都保有自迴序列的型式,以此改良數據化最佳控制設計公式,降低雜訊對數據化設計的影響。
The data-based linear quadratic (DBLQ) design, solve two major problems in the linear quadratic (LQ) design: the need for the information of the system states, and the need for an indefinite plant model. With DBLQ design, the controller can be calculated from the open-loop plant test data directly. However, any noise signal in the test data induces error into this DBLQ design, In general, the true LQ solution would be an auto-regressive(AR) sequence, but noise-induced error causes the DBLQ solution deviate from an AR sequence. In order to repress this design error, a modified DBLQ design was developed in this thesis via incorporate an AR sequence annihilator and the DBLQ design.
[1] Chan, J.T. ,Design of control laws for adaptive signal tracking systems, Ph.D. Dissertation, Univ. of Washington, Seattle, Washington. (1986)
[2] Chan, J.T. ,Optimal output feedback regulator - A numerical synthesis approach for input-output data, ASME/JDSMC vol.118. (1996)
[3] Chan, J.T. ,Output feedback realization of LQ optimal systems: A general design with data-based synthesis, Int. J. of Control, vol.72, No.12, pp.1054-1064. (1999)
[4] Chan, J.T. , Output feedback realization of LQ optimal systems, The CDC, Sydney, Australia,. Proceedings vol. 1, pp3670-3675 (2000)
[5] Chen, C.T. ,Linear system theory and design Holt, Rinehart, and Winston, New York. (1984)
[6] Doyle, J.C. and G. Stein, Robustness with observers. IEEE Transactions on Automatic Control, AC-24, pp.607-11. (1979).
[7] Franklin, G.F. and Powell, J.D. (0998) , Digital control of Dynamic systems, Addison Wesley, New York, N.Y.
[8] Gever, M. ,Toward a joint design of identification and control, Essays on control: Perspective in the theory and its Application. (1983)
[9] Kalman, R.E. ,Contribution to the Theory of optimal control. Bol. Soc. Mat. Mexi, 5, 102-19. (1960).
[10] Kalman, R.E. ,The theory of optimal control and the calculus of variation. Mathematical Optimisation Techniques. (1963).
[11] 陳政雄,數據化控制設計之效能評估(I):與傳統控制設計之比較,國立成功大學航空太空工程研究所碩士論文。(2004)